Temperature key to miniature electronics

DN Staff

May 21, 2001

1 Min Read
Temperature key to miniature electronics

James D. Meindl, the director of the Microelectronics Research Center at the Georgia Institute of Technology, says there is a limit to the miniaturization of the electronic components we use in computers and other products. The limit is absolute temperature. Meindl and collaborator Jeffrey A. Davis came to their conclusion by studying the limit two ways. First, they studied the minimum energy required for producing a distinguishable binary transition. They also examined the minimum energy required for sending the resulting signal along a communications channel. The limit for both studies was the same and expressed as E(min) = (In2)kT. In the equation, T is absolute temperature, k is Boltzmann's constant, and In2 is the natural log of two. Although this fundamental limit provides a theoretical stopping point for electronics designers, Meindl says we'll never get close to it because electronic signals move through interconnects no faster than the speed of light and because quantum mechanics theory introduces uncertainties. So, what's next for microelectronics?. No one knows for certain, but Meindl says that's what his nanotechnology research is trying to answer.

For more information, contact Meindl at [email protected] or call (404) 894-510.

Sign up for the Design News Daily newsletter.

You May Also Like