Overcoming the Medical Device Miniaturization Wall

Miniature motors and motion control components are opening new opportunities for medical applications. A free webinar explores the advantages and challenges of medical device miniaturization.

Rob Spiegel

May 22, 2020

3 Min Read
Overcoming the Medical Device Miniaturization Wall

Motors and motion control components continue to shrink. The miniaturization trend allows manufacturers to install motors and motion control into smaller and smaller form factors. When components come down to size, signals travel shorter distances within devices, which leads to faster performance speeds. This is particularly important in medical devices and applications. Yet users need to learn the architecture of miniaturization in order to make it effective.

There is a wide range of miniature components for medical devices. (Image source: maxon motors)

Design News is offering a free webinar on the topic, The Miniaturization of Medical Devices, on Thursday, May 28 at 2:00 PM Eastern. The one-hour webinar will be presented by Jim Beretta, president of Customer Attraction. Jim will be joined by Aaron Johnson, VP of marketing and customer strategy at Accumold, and David Henderson, CEO of New Scale Technologies.

During the webinar, the presenters will explain developments in the miniaturization of medical devices, and they will also assess when miniaturization is feisible and when it reaches beyond the capabilities of micro archetecture.

The Architecture of Motor, Sensing, Drive and Control, Electronics, and Mechatronic Miniaturization

For miniature devices to work effectively, micro motion module architecture must be aligned to the overall product requirements. Henderson noted the requirements of a procedure and the capabilities of micro components do not always line up. “Recently a company was exploring new designs for arthroscopic tools with the actuators on the distal end – inside the body nearest to the procedure,” David Henderson, CEO of New Scale Technologies, told Design News. “Their goal was to eliminate cables, joints and the associated transfer mechanisms that connect to external motors or the surgeon’s hands.”

Henderson noted that their goal was not going to work. “Their specification for force and torque were unchanged from existing external motion sources. At the same time, they wanted a solution that was 100 times smaller in volume. This was not feasible,” said Henderson. “Miniaturization requires re-assessment and new thinking of all product specifications to create a practical solution.”

Henderson offers another example of a company that needed a tiny laser beam steering solution. The application required the same scanning speed, angle precision, and laser beam diameter as a benchtop commercial galvo system but with the full system fitting on their fingertips.

“Scanning speed and operating power are propositional to frequency and moving mass,” said Henderson. “Benchtop high-speed and high-power is not yet available in centimeter-scale modules. In addition, measuring angular motion becomes proportionately more difficult at smaller motor diameters. So, effective miniaturization requires re-assessment and new thinking.”

The Future of Small Motors

Henderson noted that new commercial magnetic materials and innovative motor designs are enabling higher efficiency and improved precision for motors below 25 mm diameter. He added that “Advanced digital sensors on a single IC are measuring position with less power, faster updates, and greater resolution.”

Intelligence is also getting smaller, and it can now accompany the motor. “Higher power density analog microelectronics and digital microprocessors fit on tiny printed circuit boards that easily integrate alongside the motor,” said Henderson. “When motor diameters are less than 6 mm diameter, a new class of piezoelectric ultrasonic motors are commercially available that provide higher torque and power density and operate at less than 5 volts.”

Click here to register for the webinar.

RELATED ARTICLES:

Rob Spiegel has covered automation and control for 19 years, 17 of them for Design News. Other topics he has covered include supply chain technology, alternative energy, and cyber security. For 10 years, he was owner and publisher of the food magazine Chile Pepper.

About the Author

Rob Spiegel

Rob Spiegel serves as a senior editor for Design News. He started with Design News in 2002 as a freelancer covering sustainability issues, including the transistion in electronic components to RoHS compliance. Rob was hired by Design News as senior editor in 2011 to cover automation, manufacturing, 3D printing, robotics, AI, and more.

Prior to his work with Design News, Rob worked as a senior editor for Electronic News and Ecommerce Business. He served as contributing editolr to Automation World for eight years, and he has contributed to Supply Chain Management Review, Logistics Management, Ecommerce Times, and many other trade publications. He is the author of six books on small business and internet commerce, inclluding Net Strategy: Charting the Digital Course for Your Company's Growth.

He has been published in magazines that range from Rolling Stone to True Confessions.

Rob has won a number of awards for his technolloghy coverage, including a Maggy Award for a Design News article on the Jeep Cherokee hacking, and a Launch Team award for Ecommerce Business. Rob has also won awards for his leadership postions in the American Marketing Association and SouthWest Writers.

Before covering technology, Rob spent 10 years as publisher and owner of Chile Pepper Magazine, a national consumer food publication. He has published hundreds of poems and scores of short stories in national publications.

Sign up for Design News newsletters

You May Also Like