Video: Robot Has Roach-Like Reflexes

Ann R. Thryft

June 28, 2012

3 Min Read
Video: Robot Has Roach-Like Reflexes

A fast-moving robot modeled after a cockroach can now perform acrobat-like flips that mimic the movements of both cockroaches and geckos while escaping predators. The robot, named Dynamic Autonomous Sprawled Hexapod (DASH), may serve as a model for small, highly mobile search-and-rescue robots that can assist first responders.

The 10-cm-long, six-legged DASH had already been developed by the University of California, Berkeley's Biomimetics Millisystems Laboratory, including a winged version for studying wing-assisted running. It can move at 15 body lengths per second. The new research was conducted by a team from the same lab, together with researchers from the University's PolyPEDAL Lab, led by professor Robert Full.

Although smaller animals don't move as fast as larger ones in terms of absolute speed, smaller animals can take advantage of better maneuverability partly because of their smaller scale, the researchers say. When running to escape a predator, both cockroaches and geckos can quickly swing under a ledge in a 180-degree flipping motion that the researchers describe as "pendulum-like."

153358_856723.jpg

To analyze these movements, the team recorded geckos and cockroaches running quickly up an incline toward the edge of a ledge. Then they digitized the creatures' motions and generated a simple model to generalize their movements.

In an article published in PLoS ONE, the team says, "Both species ran rapidly at 12 to 15 body lengths per second toward the ledge without braking, dove off the ledge, attached their feet by claws like a grappling hook, and used a pendulum-like motion that can exceed one meter-per-second to swing around to an inverted position under the ledge, out of sight."

To simulate the movements that geckos and cockroaches made by using their claws, the team equipped a DASH robot with small Velcro hooks attached at the end of its hind legs. Researchers also attached Velcro to the bottom and top sides of the ledge to create points for pivoting and holding.

The researchers have started to develop both active and passive designs for bio-inspired claws to replace the Velcro hooks. They point out that robots have been designed to either run or climb, but not do both, or to transition from one surface to another. By quantifying acrobatic behavior in small animals, they say, small robots like DASH could soon become more mobile and able to make those transitions.

Related posts:

About the Author(s)

Ann R. Thryft

Ann R. Thryft has written about manufacturing- and electronics-related technologies for Design News, EE Times, Test & Measurement World, EDN, RTC Magazine, COTS Journal, Nikkei Electronics Asia, Computer Design, and Electronic Buyers' News (EBN). She's introduced readers to several emerging trends: industrial cybersecurity for operational technology, industrial-strength metals 3D printing, RFID, software-defined radio, early mobile phone architectures, open network server and switch/router architectures, and set-top box system design. At EBN Ann won two independently judged Editorial Excellence awards for Best Technology Feature. She holds a BA in Cultural Anthropology from Stanford University and a Certified Business Communicator certificate from the Business Marketing Association (formerly B/PAA).

Sign up for the Design News Daily newsletter.

You May Also Like