TI Targets Autonomous Driving with New Radar Sensor

Smaller, lighter-weight sensor technology can even be used in drones.

Charles Murray

May 16, 2017

3 Min Read
TI Targets Autonomous Driving with New Radar Sensor

Texas Instruments  Inc. (TI) today is rolling out a smaller, lighter, lower-power sensor that is said to deliver better accuracy for autonomous cars and industrial measuring applications.

Using what’s known as millimeter wave (mmWave) technology, the new 76-81 GHz single-chip sensor is said to offer 10-times better accuracy than commonly used predecessors. TI engineers foresee its use in long-range automotive vision applications, such as emergency braking, as well as in shorter-range applications, such as blind spot warning, park assist and occupant detection. They’re also targeting it at drones, robots, forklifts, traffic monitors and intelligent street lights.

Although mmWave sensors have existed for many years, TI’s new product is said to depart from the status quo in terms of packaging and precision. “This provides a savings on power, a savings on size, and much greater accuracy than was available before,” Sameer Wasson, general manager for radar and analytics processors at TI, told Design News.

TI's new sensor is said to be about a quarter the size and weight of predecessors. (Source: Texas Instruments Inc.)

TI says that the sensor’s resolution enables it to measure accurately down to the width of a human hair – about 5 µm. To demonstrate its sensitivity, TI engineers have calculated a human heart rate from five feet away by detecting the deflection of a person’s chest when the heart beats.

TI is introducing two families of sensors based on the technology – one for automotive and another for industrial applications. The automotive family includes the AWR1243 sensor, the AWR1443 sensor with an integrated microcontroller (MCU), and the AWR1642 sensor with an integrated MCU and digital signal processor (DSP). Similarly, the industrial family includes an IWR1443 with MCU and IWR1642 with MCU and DSP. All are single-chip solutions measuring 10.4 X 10.4 mm.  

The key to the new design is the use of a CMOS (complementary metal oxide semiconductor) process that enabled TI engineers to integrate digital and analog circuits into a single chip. In contrast, mmWave sensor solutions up to now have typically employed discrete components, including transmitters, receivers, ADC/DAC, and processors.

“Combining all those discrete components into a single piece of silicon, you can save nearly three-quarters of the size and weight of today’s components,” noted Robert Ferguson, marketing director for industrial mmWave sensors at TI. Ferguson added that the new sensor burns about one-fourth as power as predecessors.

Using scalable software, the new sensor can also be programmed to transition from long range automotive radar applications to short range, Ferguson said. “So as you get off the freeway and go to park the car, the sensors can be dynamically reconfigured to focus on a different function,” he told us.

The same technology can also be applied to industrial applications, such as level sensing in a tank, perimeter security sensing, intelligent street lighting, traffic monitoring and people-counting. Its light weight also makes it a candidate for drones, TI said.

With its sensor announcement, TI joins Analog Devices, Inc. and Renesas Electronics America, which announced in April that they have collaborated on a 77/79-GHz radar sensing technology for autonomous vehicles. Their technology, which is also CMOS-based, uses ADI’s Drive360 radar sensor and Renesas’ RH850/V1R-M microcontroller.  

Senior technical editor Chuck Murray has been writing about technology for 33 years. He joined Design News in 1987, and has covered electronics, automation, fluid power, and autos.

Automation and robotics get smarter every day, changing the way we design and manufacture. Keep up with critical shifts and advancements by connecting with over 9,000 professionals who drive these changes across industries like  plastics, packaging, and medtech. Join the East Coast's largest annual Design & Manufacturing Event in NY this June. Register today!

About the Author(s)

Charles Murray

Charles Murray is a former Design News editor and author of the book, Long Hard Road: The Lithium-Ion Battery and the Electric Car, published by Purdue University Press. He previously served as a DN editor from 1987 to 2000, then returned to the magazine as a senior editor in 2005. A former editor with Semiconductor International and later with EE Times, he has followed the auto industry’s adoption of electric vehicle technology since 1988 and has written extensively about embedded processing and medical electronics. He was a winner of the Jesse H. Neal Award for his story, “The Making of a Medical Miracle,” about implantable defibrillators. He is also the author of the book, The Supermen: The Story of Seymour Cray and the Technical Wizards Behind the Supercomputer, published by John Wiley & Sons in 1997. Murray’s electronics coverage has frequently appeared in the Chicago Tribune and in Popular Science. He holds a BS in engineering from the University of Illinois at Chicago.

Sign up for the Design News Daily newsletter.

You May Also Like