Two cases involving RF power amplifiers

DN Staff

June 22, 2010

3 Min Read
Two cases involving RF power amplifiers

By William J Garner - Engineering Consultant

A while ago I was employed by a small firm as an engineering consultant to work on power amplifiers that were to go onto military aircraft. A certain quantity of power amplifies were designed and delivered to the Air Force to be installed on jet fighters and the application was to apply about 20 watts in the UHF band to an antenna. Since many electronic devices are used on aircrafts, this unit was selected to operate by turning on or off the power supply voltage or Vcc. to save power.

After awhile they were to returned back to the firm with the output bipolar power transistor inoperative. I was to determine the failure and fix the problem. Removing the bottom cover, I saw that the output power device to be a bipolar silicon stud mount transistor with four leads fanning out and soldered to the PC board. Powering up the unit with the required 35 volts DC and measuring the collector voltage to be 35 volts and the emitter voltage to be zero volts which means no collector current. Obtaining a schematic from the design engineer, I could see no obvious reason for the unit to fail. Next I decided to remove the ceramic cover on the device to see if any visible damage was evident on the transistor surface. Using slip-joint pliers, I popped off the cover and with the aid of a stereo microscope I noticed that the surface of the emitter and base fingers were black which indicated an over-voltage.

Next I looked at the schematic and the device ratings and saw that the device Vbe was rated at 30 volts while when operating in it’s Class A mode, the Vbe was 25 volts. So one would think this device would be in the safe operating mode with the Vbe rating of 30 volts.

Then I looked at the schematic and noticed that the bypass capacitor value on the Vcc supply line was .01 ufd. while the bypass capacitor on the base resistor divider was 1.0 ufd. Using Pspice and an triggered scope, I determined that when the Vcc of 35 volts is applied, the voltage on the collector is 35 volts since the voltage on the base does not reach the required level because of the 1.0 ufd capacitor taking longer to charge which means that for some few milliseconds, the Vbe across the device is 35 volts, hence the breakdown event occurs. Fixing the problem was easy by reducing the base bypass capacitor to 0.01 ufd, and increasing the Vcc bypass capacitor to 0.1 ufd.

A different power amplifier was also returned because of a gradual failure of the output stage power delivery. This unit also used stud mount bipolar silicon device with four fanned-out leads, but the device was mounted such that the leads were below the top surface of the PC board and than appeared to be bend up on over to the top of the PC board then soldered. Again I popped-off the ceramic cover and noticed the many wire bond leads from both emitters were either broken or stretched almost flat. Some appeared to be vaporized with few remaining to carry the required Ic current.

Sign up for the Design News Daily newsletter.

You May Also Like