Design News is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Video: MEMS-Enabled Artificial Lung

Video: MEMS-Enabled Artificial Lung

In a pioneering approach to artificial organ development, engineers at Draper Laboratory in Cambridge, Mass., are applying semiconductor manufacturing technology to the development of artificial organs such as lungs and kidneys.

Intricate internal structures produced via micro-electromechanical systems (MEMS) are being tested as vascular systems that could oxygenate a person's blood during surgery. They also could function down the road as part of an implantable device.

"This is important because oxygenators currently used during heart surgery use a significant amount of anticoagulants," says Dr. Jeffrey Borenstein, principal investigator in the tissue engineering research being conducted at Draper.

Most artificial lung devices used today consist of hollow, porous fiber bundles inside a hard-shelled jacket. Oxygen is introduced through the fibers and diffused into blood flowing around the fibers. This process often damages the blood for maximum membrane exposure.

Adverse interactions between the blood and device materials such as polyethersulfone may cause clotting. Preventing this requires a high level of anticoagulants, which can cause excessive bleeding and other problems for the patient.

Doctors at leading Boston teaching hospitals approached Borenstein and asked if Draper could research technologies to replace current oxygenating devices. The doctors were part of CIMIT, the Center for Integration of Medicine and Innovative Technology.

The idea was that microfabrication technology developed at Draper for sensors used in defense, aerospace, and commercial products such as digital cameras and the Nintendo Wii game controller might help create an artificial lung with microchannels that mimic the blood vessels in human organs.


The story continues on page 2; please click below.

TAGS: Medical
Hide comments


  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.