Making Beautiful Music With Smart MEMS Microphones

Karen Lightman

September 6, 2012

3 Min Read
Making Beautiful Music With Smart MEMS Microphones

Remember what a big hit Guitar Hero was when it came out? All of us air guitar amateurs were able to justify and perfect our skills at playing in a rock band -- all in the comfort of our family rooms. If you are a MEMS nerd like me, you may recall MEMS played a significant role in the success of Guitar Hero. (Without the tilt motion sensing provided by the MEMS accelerometer inside, we might as well be playing "Kumbaya" instead of "Walk this Way.")

After hearing the beautiful sound achieved with the high-performance MEMS microphone that Rob O'Reilly of Analog Devices demonstrated at Sensors Expo 2012, I have the same kind of anticipation for what kind of rock stars this device might unleash. What makes this MEMS mic so different is that the sound is so clear and perfect that it can make anyone sound like a rock star, sans the million-dollar recording studio. What's more, my sources at Analog Devices tell me this "smart" device is also a lower-cost one.

What makes it smart? According to the folks at Analog Devices, the MEMS microphone's technology provides a higher signal-to-noise ratio for better near- and far-field performance, as well as flatter frequency response and noise rejection. This ultimately produces higher-quality sound. Throw beam forming, directionality, and proximity response into the mix, and you have a microphone for a wide range of applications.

With all deference to the Walt Disney Company, I asked O'Reilly how ADI makes the magic. "With our MEMS microphone, we integrate more of the signal chain than any other MEMS mic by integrating a MEMS transducer with a proprietary audio ASIC that leverages our decades of audio signal-processing experience." (In the video below, you can learn more about the MEMS mic from my interview with Jerad Lewis, microphone applications engineer at Analog Devices.)

There are several manufacturers in the MEMS microphone space, including Akustica (part of the Bosch Group), Knowles, STMicroelectronics (whose technology was jointly developed in a partnership with OMRON), and a few smaller players. I don't want to start a contest of whose MEMS mic is better. I happened to hear O'Reilly's demo, and I was astounded by the sound quality. I am all ears if anyone else wants to demonstrate the amazing qualities of a competing microphone. Or you can hire me to record a little something for the Grammys. That would be good, too!

Why is a smart mic important? For starters, in the consumer market, a smart MEMS mic is optimal for high-end audio capturing applications/products like conference phones, studio mics, DSLR cameras, smartphones, tablets, and headsets. The smartness of a MEMS mic will differentiate these products from their low-end (and low-intelligence) counterparts. But let's not stop with the consumer applications. Smart MEMS mics can find themselves in other markets, including industrial, health/medical, military/public safety, security systems, and you can take it from there. (I actually encourage you to let your imagination run with it -- going along with my mantra and vision of "MEMS everywhere.")

Related posts:

Sign up for the Design News Daily newsletter.

You May Also Like