Design News is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Composite Bonding Takes to the Streets

Composite Bonding Takes to the Streets

It's no secret that well-designed composite components can shave weight from cars without giving up an ounce of structural performance. And at the right production volumes, composites can cost less too. Yet composite components have a downside when it comes time to joining them to the rest of the vehicle-in part because holes required by mechanical fasteners can cause stress-concentration and fatigue-life problems down the road.

So what's the best way to attach composite components? Four presentations from the Society of Plastics Engineers Automotive Composites Conference, held recently in Troy, MI, examined some of the joining difficulties and solutions associated with composites.

VANQUISHING MECHANICAL FASTENERS
For an object lesson in the potential for adhesive bonding of automotive composites, look no further than Ford Motor Company's 2002 Aston Martin Vanquish V12. "From its extruded aluminum space-frame to its carbon-fiber transmission tunnel and energy-absorbing crash structures, the entire vehicle is adhesively bonded together," reports John Hill of Ford's Research and Advanced Engineering group (Dearborn, MI). For the aluminum components, company picked a toughened single-component epoxy. "However, some of the most challenging parts on the vehicle are those made of composites," he says.

In all, the Vanquish V12 has 25 composite components, mostly made through resin transfer molding processes. These include not just the transmission tunnel but also the front-end crash assembly, the strut brace between the front shock towers, the rear assembly, and the body sides. "Several of these composite components were highly loaded structural members that contributed significantly to the vehicle's performance," Hill recalls.

And like many composites part they weren't easy to join. Hill's presentation outlines the difficulties faced in one key joint, the one between the 60 kg carbon- and glass-fiber-reinforced front crash structure and the vehicle's cast aluminum shock towers. This joint has to withstand both frontal and offset crash loads as well as accommodate build tolerances that later allow the hood and fender to fit.

Joint design helped out on both scores. Hill describes the joint as having a large bond area that helps minimize stresses. The joint also features a tapered groove that has been carefully designed to take up some of the build tolerances and also oriented so that the joint remains mainly in compression under the crash loads.

But design alone wouldn't ensure a successful joint. Ford Research engineers also went through an exhaustive testing process to identify the best adhesive for the job. After an initial screening, they put three two-component adhesives-two polyurethanes and one methymethacrylate-through a battery of lab tests process before settling on one of the polyurethanes. This evaluation process went well beyond the usual shear-strength tests to include tests for stressed corrosion durability and creep as well as a dynamic mechanical thermal analysis (DMTA) and a determination of the shear modulus.

Why so many tests? One reason has to do with shortcomings of the lap shear test, perhaps the most common strength test in the adhesives business. "Other than confirming that an adhesive bonds to a substrate, simple lap shear specimens reveal little about the suitability of an adhesive to a given application," Hill says. And he argues that shear strength is rarely the limiting factor in a design problem because it's usually possible to increase a joint's bond area and lower its stress concentrations.
The other tests, by contrast, provided much more useful information about the real-world performance of the adhesive-particularly under corrosive, high-temperature conditions. The MMA, for example, exhibited the best corrosion performance of the three candidates. But the creep testing and measurement of tensile modulus via the DMTA highlighted this adhesive's sensitivity to elevated temperatures, which sealed the deal for the polyurethane.

For more information on the Vanquish V12, go to http://www.astonmartin.com/html/vanquish.html

OTHER BONDING CHALLENGES
The conference also covered three other aspects of composite joining.

*A presentation by Dow Automotive engineers examined the use of bonded metal-plastic composite structures. Unlike some hybrid systems that combine the metal and plastic at discrete points-whether though overmolded features or heat staking-the method described here involves continuous adhesive bonds design to reduce stress concentrations. A key part of this system has been the development of an acrylic based adhesive capable of bonding low-surface energy materials, like polypropylene, to other plastics or metals.

*Researchers from Oak Ridge National Laboratory and Pacific Northwest National Laboratory described ongoing work to overcome the joining issues associated with joining thick fiber-reinforced composite sections to steel. The work includes design and manufacturing strategies to get around the "bolt-hole" difficulties faced by composites.

*Kyoto Institute of Technology researchers discussed ways to use stacking sequences and laminate thicknesses to influence the ability of matrix-hybrid composites to combat the stress concentrations that result when these materials are joined with mechanical fasteners.

For more information on the conference, visit www.speautomotive.com.

Hide comments
account-default-image

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish