Design News is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Chaos harnessed to provide fast, 'private' communications

Chaos harnessed to provide fast, 'private' communications

Researchers at the Georgia Institute of Technology have developed a system that encodes information onto chaos, transmits it, and then decodes the information away from the chaos. Rajarshi Roy, one of the researchers and chair of Georgia Tech's School of Physics, explains how it works. "In an ordinary digital signal, the message can immediately be seen," Roy reports. "But in our system, digital information is encoded in the chaos, so the message would not be obvious to a person who may intercept it." In the experimental system, a stable semiconductor diode laser produces a square wave "message" signal. That signal, amplified by an erbium-doped fiber amplifier (EDFA), is introduced into a chaotic signal produced by an erbium-doped fiber ring laser like that used in today's communications industry. The resulting combined signal, containing a mix of the message and chaotic carrier, moves through an optical fiber to a second EDFA nearly identical to the first. Upon encountering the combined signal, the receiving EDFA begins generating chaotic fluctuations synchronized with those produced by the transmitting laser. The chaotic portion of the signal, measured by a digital oscilloscope, is subtracted from the combined signal and low-pass filter to recover the original "coded" message. E-mail [email protected]

Hide comments


  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.