Infineon Driver Assistance's Big Ears Are All the Better to Hear You With

Modern advanced driver assistance systems employ vision, but Infineon is adding hearing to help them identify threats.

Dan Carney, Senior Editor

July 27, 2021

2 Min Read
MEMS_microphone_Reality_AI.jpeg
Infineon Technologies AG

What good is an emergency siren to an automatic driver assistance system (ADAS) that can’t hear? Radar, lidar, and cameras all rely on line-of-sight vision in some part of the spectrum.

But that provides no detection of objects that are obscured by obstacles, as commonly happens at blind intersections, where the sound of an approaching emergency vehicle or high-speed driver can provide a warning of out-of-sight hazards.

Screen Shot 2021-07-22 at 12.41.49 PM.png

Detected sounds are displayed to to the driver using the head-up display to indicate an oncoming vehicle has been detected and its direction.

If ADAS systems are going to augment drivers’ senses, it needs to employ more of them. In this case, Infineon Technologies AG has developed a microphone system for cars that gives the ADAS a sense of hearing so it can detect unseen, and unseeable, threats.

This lets ADAS systems provide drivers with earlier notification of these threats and increase their safety margin.

Infineon's new sensing solution uses the company’s XENSIV MEMS microphones, AURIX microcontrollers, and Reality AI’s Automotive See-With-Sound (SWS) system. Reality AI’s machine learning-based algorithms let the system detect unseen emergency vehicles, cars, and other road participants.

A specific feature built into the system is the ability to distinguish the unique sounds of different countries’ emergency vehicle sirens. But there is no word on whether it provides any suitable commentary upon hearing, say, France’s distinctive flip-flop siren sound. Sacre bleu!

Related:How Stereoscopic Cameras can Supplement Lidar for Better Automotive Advanced Driver Assistance Systems

On the hardware side, the automotive-qualified XENSIV MEMS microphone has an increased operating temperature range from -40 °C to +105 °C allowing various use cases in harsh automotive environments. The low distortions (THD) and the high acoustic overload point (AOP) of 130 dB SPL enable the microphone to capture distortion-free audio signals in loud environments. These characteristics allow reliable classification of noises, even if the siren sound is hidden in high background or wind noise.

The sound from the mics needs to be processed, so the Reality AI software runs on Infineon’s AURIX TC3x processors, which are widely used across multiple automotive applications. The product range stretches from one to six cores and up to 16 MB of Flash.

About the Author

Dan Carney

Senior Editor, Design News

Dan’s coverage of the auto industry over three decades has taken him to the racetracks, automotive engineering centers, vehicle simulators, wind tunnels, and crash-test labs of the world.

A member of the North American Car, Truck, and Utility of the Year jury, Dan also contributes car reviews to Popular Science magazine, serves on the International Engine of the Year jury, and has judged the collegiate Formula SAE competition.

Dan is a winner of the International Motor Press Association's Ken Purdy Award for automotive writing, as well as the National Motorsports Press Association's award for magazine writing and the Washington Automotive Press Association's Golden Quill award.

AstonMartinVanquish_©AndyMorgan_025_copy_2.JPG

He has held a Sports Car Club of America racing license since 1991, is an SCCA National race winner, two-time SCCA Runoffs competitor in Formula F, and an Old Dominion Region Driver of the Year award winner. Co-drove a Ford Focus 1.0-liter EcoBoost to 16 Federation Internationale de l’Automobile-accredited world speed records over distances from just under 1km to over 4,104km at the CERAM test circuit in Mortefontaine, France.

He was also a longtime contributor to the Society of Automotive Engineers' Automotive Engineering International magazine.

He specializes in analyzing technical developments, particularly in the areas of motorsports, efficiency, and safety.

He has been published in The New York Times, NBC News, Motor Trend, Popular Mechanics, The Washington Post, Hagerty, AutoTrader.com, Maxim, RaceCar Engineering, AutoWeek, Virginia Living, and others.

Dan has authored books on the Honda S2000 and Dodge Viper sports cars and contributed automotive content to the consumer finance book, Fight For Your Money.

He is a member and past president of the Washington Automotive Press Association and is a member of the Society of Automotive Engineers

Sign up for Design News newsletters

You May Also Like