Rapid Insert Molding Speeds Prototypes and Small Volumes of End-Use Parts

Increasingly, digital manufacturing companies that offer molding services for custom prototypes and low-volume production parts are finding their customers are demanding more speed than ever. Insert molding technology helps them trim turnaround time from

Increasingly, OEMs are seeing a change in the timelines of the companies they sell to. Multiyear projects that bring in millions of dollars are waning, while shorter projects requiring “quick turn” manufacturing are on the rise. Many companies are broadening their manufacturing capabilities in an effort to accommodate these faster turnaround projects. Increasingly, insert molding is one of those capabilities.

Product designers and engineers frequently turn to insert molding to improve part strength while trimming part weight and reducing assembly costs, production time and labor: all elements of rapid manufacturing. Insert molding is often favored above traditional overmolding, because the former is a single step process, and the latter is a two-step process requiring one shot for the substrate and another for the overmold. In insert molding, a threaded insert, bushing, sleeve or boss is manually placed into the mold. The mold closes, the plastic flows, the mold opens and the part is ejected. The result is improved part strength and reliability.

Good candidates for insert molding are rotating parts such as fan blades or drive gears, or any part that contains a threaded hole. Knobs, handles, or dials that screw onto a threaded stud are good examples, as are plastic air or hydraulic manifolds requiring additional strength in threaded areas. From a design perspective, rapid injection molding works best when designers maintain proper draft angles, keep wall thicknesses consistent, eliminate undercuts, and avoid unnecessary part features and superfine surface finishes. The process is also ideal for parts that are a combination of plastic and metal, according to Becky Cater, Global Product Manager of Injection Molding for Minnesota-based Proto Labs, which recently introduced a rapid-turnaround service that installs molded-in inserts during the molding process.

“A typical application of insert molding is to include one or more threaded metal inserts in a plastic part when that part is intended to mate to another part in an assembly,” Cater told Design News. “Plastics alone may not have sufficient mechanical properties to withstand the forces required to fasten two parts together. For example, threads in a plastic part can become worn over repeated usage, which can result in a failed part. Metal inserts help reinforce the properties of the plastic and ensure reliable fastening over repeated use. This combination of plastic and metal allows designers to take advantage of the weight reduction of plastics and the strength of metal.”

Increasingly, digital manufacturing companies that offer molding services for custom prototypes and low-volume production parts are finding their customers are demanding more speed than ever. Insert molding technology helps them trim turnaround time from months to weeks.

 

Proto labs
Rapid insert molding technology makes it possible to produce custom parts in low volume within days. (Image: Proto Labs)

 

There are multiple ways to install inserts into a plastic part: molded-in inserts that are installed during the molding process, and post-molding installation, where the inserts are installed into a molded part in a subsequent manufacturing step (heat staking and ultrasonic installation are two examples of post-molding insert installation methods). Compared to installing inserts into a plastic part

Comments (0)

Please log in or register to post comments.
By submitting this form, you accept the Mollom privacy policy.
  • Oldest First
  • Newest First
Loading Comments...