Design News is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Multi-Materials Printing Shakes up Antenna Manufacturing

Multi-Materials Printing Shakes up Antenna Manufacturing

Newspapers and magazines are closing left and right, but one form of printing is ready to take off.

It's the large-scale print-manufacturing of complex 3-D structures using a new additive manufacturing technology called High-Volume Print Forming invented by the scion of a Boston newspaper family.

Charles S. Taylor, the grandson of Boston Globe publisher Charles H. Taylor, developed manufacturing technology in which converted commercial printing equipment produces tiny layers of materials that stack up to produce complex designs with multiple functions.

That technology is now in the final qualification stage for antennas used in cell phones and is on the verge of becoming a major player in IC packages for portable electronics. Other potential applications include fluidic parts, energy harvesters, fuel cell parts and sensors.

"The sweet spot for the technology is parts that are about the size of paper clips," says Arthur L. Chait, president and CEO of EoPlex, the company started by Taylor in 2001. "One thing that really differentiates this technology from rapid prototyping is the ability to use many materials."

The process can use as many as six materials at a time, and the range of those materials is almost limitless - another huge difference from rapid prototyping.

The materials catalog for High-Volume Print Forming includes:

  • Glass-ceramic composites;
  • Piezoelectric materials (PZT);
  • Oxides such as alumina (Al2O3), silica (SiO2), and zirconia (Zr2O3);
  • Custom low-loss dielectrics;
  • Structural metals such as nickel alloys, stainless steel, iron;
  • Conductors such as palladium, silver, gold, platinum; and
  • A wide variety of plastics with and without fillers.

Chait says plastics can have three different roles in the process: as a binder that permits flow, a structural material and/or as a sacrificial material.

The process starts with the development of "pastes" or "inks" that are highly loaded with materials such as metals or ceramics. These formulations are developed by chemists at EoPlex and are highly proprietary.

Photo Tooling


The printer works with a support system as a printing platen to reassemble a CAD-created structure that has been horizontally sliced into many thin layers. Files from any commercial 3-D CAD system are used to create photo tooling and printing masks. Printing masks and photo tooling are usually available in about two weeks.

The printing portion of the process is similar to "two-dimensional" systems such as screen printing, flexo, gravure or offset lithography. A screen-printer machine pushes material with a squeegee-like device through a fine screen with a pattern of open spaces to create a pattern. The screen functions as a stencil. A sacrificial material is printed to form a temporary support around the positive ink. Many sheets are stacked up like pages in a book and part of the magic is that each layer must cure quickly to allow the next layer to begin.

Chait says the company is printing many tiny objects on a given sheet so the process is suitable for mass production. Further processing may involve sintering in an oven, much as in powder injection molding. "The shrinkage may be as much as 15 or 20 percent," he says.

Charles Taylor originally invented the process as a way to make superior medical devices, such as stents. But the technology is getting significant traction for electronics components, such as cell phone antennas or IC packages.

Cell Phone Takeoff


"Early antenna designs were easily manufactured by conventional ceramic techniques," says Chait. But growth in cell phone applications created demand for more complex, small antennas.

Existing manufacturing processes, such as green tape LTCC, have limitations, such as materials inflexibility and three-dimensional design constraints. With the EoPlex process, says Chait, "(design engineers) get high efficiencies, wide bandwidths, low costs and small sizes."

Chait says EoPlex plans to co-locate factories with major customers' manufacturing plants.

"This is a solution that OEMs have been waiting for," he says. "And to top it off, it's green."

Hide comments
account-default-image

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish