Design News is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Molded Polyurethane Foam Inserts for Protection and Insulation

Molded Polyurethane Foam Inserts for Protection and Insulation

Molded polyurethane foam has long been used to package components. Many design engineers, however, are not aware that properly formulated foam and carefully designed foamed parts can also be used for thermal management, acoustical insulation, vibration isolation and shock mitigation. In addition, these inserts can be used to reduce the number of parts in an assembly, thereby reducing assembly time.

Energy Management

Electro-mechanical assemblies require designs that take energy management into account, whether the energy is thermal, acoustical or kinetic. Therefore, the longevity of electro-mechanical components is closely tied to the environment in which the equipment they are housed in operates.

An effective approach to efficiently removing heat from an electronic assembly is by integrating ducted cooling in the assembly enclosure. Typically colder is better, but the economics of the assembly dictates what is considered cold enough. Forced convection heat transfer calculations can quickly become rather complex, but it is intuitive that the cooler the airflow across a hot surface, the greater the potential for cooling that surface.
Molded Polyurethane Foam Inserts for Protection and Insulation

Consider the possibility of dissipating the heat generated in an assembly by directing the cooling airflow specifically across the heat source. There will always be a need for general airflow in any enclosure housing electronic components, but instead of over sizing the cooling fan so that enough cool air will reach the hot components, a properly sized fan can cool those components by concentrating streams of cooling air specifically on those components. Problematic in enclosures is the mixing, or recirculation, of warm air across hot components. A similar problem is the bypass of cooling air into the exhaust stream. Ducting the cold air across the hot surfaces, then into the exhaust stream can maximize efficient cooling. Designing channels, ducts, into engineered molded foam inserts, can make this possible.

Acoustic Insulation

Noise caused by a cooling fan, the airflow and the electro-mechanical components can also be effectively managed with an engineered molded foam insert set. The default method used by engineers to attenuate sound is to build an enclosure around the source to block it. Unfortunately, most noise sources require openings in an enclosure to allow for airflow, mechanical linkages, electrical wiring, etc. Openings in enclosures present challenges acoustically since the omni-directional sound waves can easily escape without being attenuated. Because of this it is crucial to eliminate line-of-sight access to the noise source. One way to do this is to build a baffle system that forces the sound waves to travel along a long, tortuous, acoustically treated path.

A sound spectrum analysis of the components in an assembly, as well as of the assembly as a whole, can reveal the problematic frequencies that are propagating to the environment. From this analysis, the wavelengths of the sound waves can be calculated and an acoustical attenuation package can be designed by estimating the amount of mass needed to provide a measure of transmission loss, the amount of absorption material needed to soak up some of the acoustical energy, and the length of the air path needed to attenuate some of the noise before it escapes. By designing air path channels in properly formulated molded foam insert sets, these acoustical principles can be employed to attenuate the generated sound.
Molded Polyurethane Foam Inserts for Protection and Insulation

Molded polyurethane foam is open cell foam with a skin of variable thickness and density at the tool surface, and can be formulated to provide a measure of transmission loss and acoustical absorption. There are coatings that can be integrated on the foam surface that enhance the surface characteristics of the foam as well. Typically, die-cut pieces of open-cell polyurethane foam insulation, with specific acoustical properties, are installed in enclosures as patchwork. A considerable reduction of the number of parts involved can be realized, resulting in cost savings by making the components easier to assemble and reducing inventory maintenance.

Vibration Isolation & Shock Dissipation

Engineered, molded open cell polyurethane foam provides vibration isolation much the same way as it provides acoustical attenuation. The structure borne energy is dissipated in the foam due to the cellular interaction of the open cell foam. An engineered, molded foam insert set can be utilized to isolate sensitive components from the vibrating assembly, or isolate the vibrating components from the assembly.

Controlling the density of the foam is integral to providing molded foam inserts that provide the desired damping. Another important parameter to consider is the durability of the material providing the vibration isolation. The skinning feature of molded polyurethane foam and the availability of surface coatings can provide the wear surface required to encapsulate the equipment while providing durability. Designing the inserts properly can also eliminate the need for separate vibration mounts, reducing the number of parts required and making assembly easier.

As with vibration isolation, the cellular structure of molded open cell polyurethane foam helps dissipate the energy induced by dropping or bumping an assembly. The longevity of electronic equipment can often be enhanced by protecting the components from excessive movement and engineered, molded foam inserts can be used to capture the components in an assembly in shock absorbing material. Like the materials used for vibration isolation, the density of the molded foam is crucial to providing the shock absorption desired.

Click here for more information.
Hide comments


  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.