The research was published in the open-access journal PLOS Digital Health.

MDDI Staff

January 19, 2022

1 Min Read
IMG_2022-1-19-135059.jpg
James Thew / Alamy Stock Photo

A machine learning model could give greater insight into a patient’s ability to survive COVID-19.

Researchers took from the Universitätsmedizin Berlin studied the levels of 321 proteins in blood samples taken at 349 timepoints from 50 critically ill COVID-19 patients being treated in two independent health care centers in Germany and Austria.

A machine learning approach was used to find associations between the measured proteins and patient survival.

Fifteen of the patients in the cohort died; the average time from admission to death was 28 days. For patients who survived, the median time of hospitalization was 63 days. The researchers pinpointed 14 proteins which, over time, changed in opposite directions for patients who survive compared to patients who do not survive in intensive care.

The team then developed a machine learning model to predict survival based on a single time-point measurement of relevant proteins and tested the model on an independent validation cohort of 24 critically ill COVID-10 patients. The model demonstrated high predictive power on this cohort, correctly predicting the outcome for 18 of 19 patients who survived and 5 out of 5 patients who died (AUROC = 1.0, P = 0.000047).

The researchers conclude that blood protein tests, if validated in larger cohorts, may be useful in both identifying patients with the highest mortality risk, as well as for testing whether a given treatment changes the projected trajectory of an individual patient.

The research was published in the open-access journal PLOS Digital Health.

 

 

 

Sign up for the Design News Daily newsletter.

You May Also Like