Design News is part of the Informa Markets Division of Informa PLC

This site is operated by a business or businesses owned by Informa PLC and all copyright resides with them. Informa PLC's registered office is 5 Howick Place, London SW1P 1WG. Registered in England and Wales. Number 8860726.

Giant Robot Will Build Huge Composite Parts for Mars and Beyond

Giant Robot Will Build Huge Composite Parts for Mars and Beyond

Last December, we told you about a giant composites-making robot NASA installed at its Langley Research Center to do R&D for making better aerospace materials. Now, a similar robot has arrived at the agency's Marshall Space Flight Center. But this one will be building the biggest composite parts ever made for space vehicles like NASA's Space Launch System (SLS).

Both robots are huge, 21-ft long mechanical arms made by Electroimpact that precisely lay down an epoxy matrix and carbon fibers by sliding up and down a 40-ft track in preprogrammed patterns. The difference is primarily in how the two will be used, Chauncey Wu, senior research engineer at Langley Research Center, told Design News. Langley's research robot, named ISAAC (Integrated Structural Assembly of Advanced Composites), is designed as a research platform to test out materials concepts. It will help NASA researchers investigate the use of composites for aviation, spacecraft, and launch systems, as well as reduce the time required for development, verification, and regulatory acceptance of new materials and structures.

Marshall's new robotic arm is designed more as an operational robot to build large parts, said Wu. According to a news release, that robot will help researchers develop high-speed, less expensive manufacturing processes for making large composite rocket structures. As we reported last year, NASA has already developed and tested big composite parts for the SLS, such as a huge, 18-ft carbon composite cryogenic fuel tank.

The SLS is a heavy-lift rocket designed to take humans on deep space exploration missions to Mars and beyond. Every ounce saved in weight makes a big difference in how much payload it can carry and how long its fuel can last. But that's not all. NASA also hopes to build other large spacecraft with composites, of 26 ft or more in diameter, such as landers, rovers, and habitats. At Marshall, the robot's first project will be creating large composite structures for a Technology Demonstration Mission for the SLS.

The robot is being housed in Marshall's Composites Technology Center, part of NASA's National Center for Advanced Manufacturing. Electroimpact's engineers helped Marshall engineers customize the robot and supporting software for building large space structures. The center contains a variety of support infrastructure for composite manufacturing, including large autoclaves, curing chambers, test facilities, and digital analysis systems.

Click on the image below to start the slideshow and see more images and video of the robot:

Ann R. Thryft is senior technology editor, materials & assembly, for Design News. She's been writing about manufacturing- and electronics-related technologies for 27 years, covering manufacturing materials & processes, alternative energy, and robotics. In the past, she's also written about machine vision and all kinds of communications.

Hide comments


  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.