10 Green Principles For EV Sustainability: Page 2 of 2

Recently published guidelines could help ensure that new battery technologies are sustainable and environmentally sound.

Key parameters, such as type of chemistry, influences battery cycle life and thermal stability, which ultimately sustainability. Degradation of battery capacity during charging and use can result in a reduction in round-trip efficiency and environmental performance. (Image source: Center for Sustainable Systems, adapted from Figure 1 in Arbabzadeh, Lewis, Keoleian J. Energy Storage (2019))

These are the 10 Principles

The ten principles, as stated in “Green principles for responsible battery management in mobile applications” in volume 24 of the Journal of Energy Storage (https://doi.org/10.1016/j.est.2019.100779) are as follows:

Principle #1: Choose battery chemistry to minimize life cycle environmental impact

Develop and select battery chemistry that enhances operational and broader life cycle performance, which ultimately drives sustainability.

Principle #2: Minimize production burden per energy service

Minimize the production burden per energy service provided by the battery system. Production burden includes material production, manufacturing, and associated infrastructure.

Principle #3: Minimize consumptive use of critical and scarce materials

Design and production of batteries should minimize the consumptive use of scarce and critical materials, since depletion of materials can constrain continued deployment of these systems.

Principle #4: Maximize battery round-trip efficiency

Maximize battery round-trip efficiency to minimize energy losses during vehicle charging and operation.

Principle #5: Maximize battery energy density to reduce vehicle operational energy

Design battery storage with maximum energy density to minimize mass-related fuel consumption.

Principle #6: Design and operate battery systems to maximize service life and limit degradation

Use charging patterns that minimize degradation by preserving battery capacity and round-trip efficiency. Temperature also impacts degradation.

Principle #7: Minimize hazardous material exposure, emissions and ensure safety

Exposure to, and emission of, hazardous materials should be minimized during production, use (operation and service), and end-of-life stages of the battery system in order to provide a safe environment for communities, workers, and users.

Principle #8: Market, deploy, and charge electric vehicles in cleaner grids

Charge EVs with cleaner electricity to lower life cycle emissions. Any grid-vehicle interaction should result in lower emissions, and cause minimum battery degradation.

Principle #9: Choose powertrain and vehicle types to maximize life cycle environmental benefits

Increasing degree of electrification from ICEV to PHEV to BEV should result in lower life cycle emissions, depending on the grid mix.

Principle #10: Design for end-of-life and material recovery

“Circular economy” end-of-life approaches (reuse, remanufacturing, and recycling) can significantly reduce environmental impacts and global demand for extracted materials.

How They Should Be Used

“These principles define and develop a solid approach to properly managing the next generation of mobile battery technologies,” RBC’s Steve Christensen told Design News. “Now we’ll continue our work with the university in 2019 to provide more specific guidance to limit battery degradation, including recommended consumer practices for optimizing battery life in electric vehicles and other consumer devices, such as mobile phones, laptop computers and cordless power tools.”

The findings behind the 10 green principles also lend themselves to educational campaigns associated with EV charging strategies to extend battery life and minimize emissions, Christensen told us. In addition, the focus on design for end-of-life and material recovery, battery round-trip efficiency, and comparisons of battery chemistries can be used by battery manufacturers and EV OEMs in minimizing the lifecycle environmental impacts.

Senior Editor Kevin Clemens has been writing about energy, automotive, and transportation topics for more than 30 years. He has masters degrees in Materials Engineering and Environmental Education and a doctorate degree in Mechanical Engineering, specializing in aerodynamics. He has set several world land speed records on electric motorcycles that he built in his workshop.


Drive World with ESC Launches in Silicon Valley

This summer (August 27-29), Drive World Conference & Expo launches in Silicon Valley with North America's largest embedded systems event, Embedded Systems Conference (ESC). The inaugural three-day showcase brings together the brightest minds across the automotive electronics and embedded systems industries who are looking to shape the technology of tomorrow.
Will you be there to help engineer this shift? Register today!


Comments (2)

Please log in or to post comments.
  • Oldest First
  • Newest First
Loading Comments...