Don’t Risk Your Most Important Calculations to Spreadsheets
March 15, 2013
A KPMG study found that, in a sample of 22 spreadsheets, 91 percent contained errors. Is this a fluke? Nope. A similar study by S.G. Powell discovered that, in a sample of 25 operational spreadsheets, 10 had an error -- with the consequent financial impact ranging from $216,806 to $110,543,305. That's not the kind of money any company can risk losing.
A new e-book by Chad Jackson, Solving Engineering's Calculation Compromise, looks deeper into:
How engineers perform calculations to assess the performance of products during a number of phases of the product development process
How a tool called engineering calculation software has emerged in recent years to help engineers build their formulas
How there are a number of benefits associated with building formulas using engineering calculation software as opposed to other alternatives.
What exactly is engineering calculation software, and how does it reduce the risks associated with spreadsheet errors? Simply put, engineering calculation software speaks the language of the mathematical engineer. It's purpose built for engineers and specifically geared for design and product development applications. Engineers build formulas based on calculus and differential equations, not cells. In engineering calculation software, formulas aren't hidden away, but instead presented as if on a sheet of drawing paper. By putting the formulas front and center, the risk of error immediately starts to drop. In addition, the software is unit-aware -- don't try to mix your meters and inches -- which essentially adds another safety check against design errors.
Another key capability of engineering calculation software is its integration with CAD applications. Not only can the engineer build equations by using parameters, dimensions, or measurements from the 3D model as variables, but each time that 3D model changes, the values automatically get updated in the related equations. Once again, another risk is eliminated as the engineer doesn't have to manually check cells -- and potentially miss some or errantly apply others. All of that allows engineers to run formula-based optimization and design of experiment routines and send the results back to the CAD model.
Engineers inevitably run into design variations, but the bulk of their work is spent looking at very similar or slight variations on the same performance characteristics or measures. Engineering calculation software accounts for those minute variations and allows engineers to save and reuse formulas, saving valuable time. The overall organization then is able not only to maximize engineer work time, but also to begin developing and storing calculation best-practices.
The bottom line is that engineering calculation software, with its inherent math language, unit awareness, integration with CAD applications, and standardization/reuse of calculations, eliminates spreadsheet risks and provides key benefits to both the organization and the individual engineer. The engineers who perform calculations more frequently and more accurately make better decisions. This translates into avoiding costly errors and winning with better designs.
And performing calculations more frequently and accurately bolsters an engineer's ability to reduce errors that turn into design disruptions later. That means engineers can focus their time on actual work, versus trying to program spreadsheets.
Brent Edmonds is the senior director of Mathcad at PTC.
Related posts:
About the Author
You May Also Like