Video: 'A Boy & His Atom'

IBM has been manipulating particles in the atomic scale since the beginning of the 1980s. They created a machine called a Scanning Tunneling Microscope to study atomic magnetism back in 1981 and 32 years later, the tech has advanced to the point of being able to precisely move individual atoms. In the search for a method that could maximize the density of digital memory, a research team from IBM San Jose decided to use the STM to have a little fun.

Lead by principal investigator Andreas Heinrich, IBM scientists set off to create a stop motion film. The set of the movie is a tiny copper plate smaller than one centimeter square. The actors are made out of the essential building blocks that make every single actor and everything else, atoms. In this case, carbon monoxide molecules were used.

The copper 111 plate and carbon monoxide atoms were chosen because they interact stably. This allows the CO molecules to naturally stay on the Cu plate so that the team could create 242 frames needed to create the stop motion movie. Each shot had to also be cleaned up of extra CO molecules to produce each frame. The entire process took two weeks.

The film, A Boy and His Atom, tells the tale of a boy who finds an atom and sees it appropriately change to make different things. From a bouncy ball to a trampoline, the atom entertains the boy before it goes zipping across the clouds like a molecule of gas.

The stage, inside the STM, is a vacuum chamber at a temperature of around 5 degrees Kelvin. This microscope magnifies the atoms 100 million times and uses an electrically charged needle, 500 nm long and a few nanometers wide, to create a small difference in potential between it and the copper plate, to move atoms without having to touch them. The researchers say they can hear when each atom moves, through the STM.

The team manipulated about 100 atoms per frame and more than 5,000 atoms during the entire film. Viewers will notice ripple-like patters created around each of the CO molecules. This is due to electron displacement between the CO and Cu atoms, according to commentary in a "Making Of" the movie video.

The film was made to showcase advances in atomic manipulation being made toward production of high-density atomic memory storage for digital devices. One bit in our current devices is stored in about 1 million atoms. However, the IBM team used the STM to prove that a cluster of 12 atoms is all that is needed to create a magnetically stable arrangement that can store one bit of information. This cluster acts as a single magnetic unit so it will not interfere with surrounding atoms. It can be changed from representing a 1 or 0 by rotating the magnetic polarity of one atom 180 degrees and the rest flip accordingly.

The film was also made as a tool to inspire the young scientists and engineers that will make atomic memory possible in the next 10 to 30 years; the results of which will be staggering. Atomic memory storage will increase memory density by 100 times over hard disk memory, 160 times over NAND Flash memory, 417 times over DRAM, and 10,000 denser than SRAM, according to IBM.

Click here for a list of nanotechnology innovations made by IBM in the past 30-plus years.

Related posts:

Comments (0)

Please log in or to post comments.
  • Oldest First
  • Newest First
Loading Comments...