The Maker Community Is Going High-Tech with FPGAs

The powerful but complex field programmable gate array (FPGA), long considered a tool for the technical elite, is unexpectedly finding new popularity in the non-elite world of the maker community.

Increasingly, suppliers are marketing devices and software to make the FPGA’s tricky implementation more accessible to the masses. New development kits and boards are rolling out, simplifying the complex FPGA programming process and attracting a more technically literate class of “makers.”

Trenz Electronic offers a low-cost development board called ZynqBerry that features a Xilinx Zynq-7010 FPGA in a Raspberry Pi form factor. (Source: Xilinx, Inc.)

“We’re seeing professional engineers -- graduates with master’s degrees and four or five years experience in industry,” Mark Jensen, corporate software strategy and marketing director for Xilinx, Inc. , told Design News . “They call themselves Pro Makers. And they see that they can use FPGAs to build programmable robots and drones, then get crowd source funding, and create their own grassroots businesses out of it.”

The result is an odd convergence: a new class of makers, maybe not formally educated in FPGA programming, but smart enough to apply the new breed of simpler development kits in ways that no one has up to now. Some of the new makers are night owls, breathing life into their ideas when they return from their nine-to-five engineering jobs. Others are students – electrical and mechanical engineers alike – learning the technology while they complete a senior project or master’s thesis. They’re building an unusual assortment of mechanized devices – from self-balancing bicycles to robots that run like cheetahs – and they’re using FPGAs for intelligence.

“Some of these projects use really complex non-linear control algorithms, so the developers have to use FPGAs to get the performance they need,” noted Ray Hsu, a section manager for academic programs at National Instruments . “The FPGA can be a great deployment target because it allows them to prototype their concepts. And they don’t need to create their own ASICs.”

Costs Are Falling

That’s always been true of FPGAs, of course. As the name suggests, FPGAs are made up of logic blocks that can be configured by the customer or engineer, even after manufacturing has begun. As such, they’ve long offered advantages for designers, including the ability to quickly implement new concepts and boost computational performance.

But since bursting on the electronics scene about three decades ago, they’ve also gained a reputation for being finicky. “Not so long ago, we’d talk to customers, and they would like the idea of FPGA flexibility, but they were scared to death by the programming,” Jensen recalled.

In many cases, it didn’t matter if users were degreed electrical engineers, experts said. “Even engineers who spent a year or more with a microcontroller did not find FPGAs easy to use,” added Warren Miller, CEO of Wavefront Marketing , a consultant to the semiconductor industry.

That being the case, it stands to reason that the hobbyist-based maker community

Comments (0)

Please log in or register to post comments.
By submitting this form, you accept the Mollom privacy policy.
  • Oldest First
  • Newest First
Loading Comments...