DN Staff

January 19, 1998

1 Min Read
Sunspots offer clues about universal gas-flow

Sunspots mark areas on the Sun's surface where the star's magnetic field becomes so intense that a buoyant tube of magnetism literally pops through the Sun's surface. The magnetic field disrupts the outward convection of heat, resulting in dark Earth-sized splotches that are some 2,500 degrees Celsius cooler than the rest of the solar surface. Periods of high sunspot activity also usher in an increase in the number of solar flares--intense bursts of magnetic energy hurling energetic particles out from the Sun. When these flares reach the Earth's magnetic field, they can wreak havoc with electrical lines, communications satellites, and even automatic garage door openers. John H. Thomas, an astrophysicist at the University of Rochester, and Benjamin Montesinos of Madrid's Laboratory for Space Astrophysics and Fundamental Physics have developed what they say is a more realistic version of the siphon-flow model, which predicts how gas flows from sunspots into the solar atmosphere. The work could also offer insights into other astrophysical processes that involve strong magnetic fields and jets of gas, such as when stars form or die--an area that's the focus of much research. For more information, contact John H. Thomas at (716) 275-6717.

Sign up for the Design News Daily newsletter.

You May Also Like