HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Shar N.
User Rank
Iron
Re: Capacitive Sensing
Shar N.   2/19/2014 4:39:46 PM
NO RATINGS
Thanks for the feedback everyone and glad you enjoyed the article! Regarding the question from User 78RPM- In mutual capacitance you scan all of the 'pixels' (or nodes in industry parlance) and convert capacitive measurements into digital. These are all stored in memory so you can make decisions in firmware as to which nodes represent fingers touching the screen. You can almost think of it as a topographical or 3D contour map of the screen with the X and Y axes representing position and the 'Z height' representing the capacitive signal. So the tallest peaks on the map represent likely finger locations. Of course you get complexities introduced from water droplets, palms resting on the screen, or hovering fingers that you want to report as hovering objects rather than touches, and so on. All of these need good algorithmic techniques to effectively reject them

 

In self capacitance you take of all these same capacitive measurements in each X and Y axis and you have a profile or a single measurement per trace. You can think of it as a bar chart with the height of each bar symbolizing the capacitive measurement. And the number of bars is the total of number of X and Y traces. You can then use a center of mass style calculation (or similar algorithm) that computes the X-position and Y-position of the finger. As you can see you're looking at each axis independently so you don't have a datapoint per node as you do in mutual capacitance but as the article illustrates there are benefits from self capacitance for power consumption, moisture immunity and first touch latency.

 

To answer your other question a single broken trace will cause a dead spot along that particular trace where the touchscreen will become unresponsive. The further along the trace (i.e.- farther from the routing channel and closer to the end of the trace) that break is located, the smaller the dead zone will be. If the trace breaks right where it routes into the touchscreen from the bezel edge then effectively the entire trace will become a deadzone. The remaining part of the touchscreen will be usable though. 

 

Shar Narasimhan (author)

Atmel Corporation

 

TJ McDermott
User Rank
Blogger
A VERY educational primer
TJ McDermott   2/5/2014 12:55:00 AM
NO RATINGS
Thank you for the lesson covering capacitive sensing touch screens.

78RPM
User Rank
Gold
Re: Capacitive Sensing
78RPM   2/2/2014 1:15:57 PM
NO RATINGS
Help me understand, Shar or taimoortariq or anyone else.  I had always thought that all the capacitance pixels of a phone or tablet were mapped to memory addresses.  The article is telling me that there are only two circuits; the X and Y axes.  Then there is some kind of capacitance profile that identifies the spot that is touched. What is that algorithm or neural network like?

A secondary question: Is it possible that a single break in either the X or Y axis could cause a single point of failure for the whole device?

taimoortariq
User Rank
Gold
Capacitive Sensing
taimoortariq   1/31/2014 3:46:16 PM
NO RATINGS
I still remember the amount of effort we had to do with resistive touches, Thanks for the elaboration of the sentive screen Shar, The science behind the touch screens is indeed fascinating.



Partner Zone
Latest Analysis
Check out these strange technology acquisitions. Many of these mergers became burdens the companies couldn't bear.
The Strati EV car printed at the IMTS show is made of SABIC's LNP STAT KON AE003. SABIC tells Design News why this carbon fiber-reinforced compound was chosen by Local Motors and Oak Ridge National Laboratories.
The 2014 Ig Nobel Prize in Physics was awarded to Dr. Kiyoshi Mabuchi and his team members for their work measuring the slipperiness of banana peels. Turns out they're slipperier with the yellow side up.
Many scientists have been working battery-free ways to power wearable electronics that can replace bulky battery packs, particularly through the use of energy-harvesting materials. Now a team of researchers in China have upped the game by developing a lightweight and flexible solar cell that can be woven into two-way energy-harvesting fabric.
Researchers in Canada have developed a chin strap that harvests energy from chewing and can potentially power a digital earplug that can provide both protection and communication capabilities.
More:Blogs|News
Design News Webinar Series
9/25/2014 11:00 a.m. California / 2:00 p.m. New York
9/10/2014 11:00 a.m. California / 2:00 p.m. New York
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
10/7/2014 8:00 a.m. California / 11:00 a.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Oct 20 - 24, How to Design & Build an Embedded Web Server: An Embedded TCP/IP Tutorial
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service