HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
B1
User Rank
Iron
Touch screens - capacitive digitizer
B1   3/27/2015 9:35:00 AM
NO RATINGS
Very nice article. I replaced the touch screen on a cell phone ( Sony Xperia Z2)by using Optical Clear Adhesive( OCA)  and it works in a strange ways. e.g I click on one letter and it writes different or writes more than one . When I test it from a service menu it draws different line than it is correct.

I had tested that touch screen before gluing( using OCA ) and it worked well.

So I separated the touch screen and LCD  it again (by using a repair machine) and test it again and it worked ok. 

 Does it mean that by a pressure ( that OCA caused ),the function changed?

Or what is faulty in that touch screen?

Thank you for help

Shar N.
User Rank
Iron
Re: Capacitive Sensing
Shar N.   2/19/2014 4:39:46 PM
NO RATINGS
Thanks for the feedback everyone and glad you enjoyed the article! Regarding the question from User 78RPM- In mutual capacitance you scan all of the 'pixels' (or nodes in industry parlance) and convert capacitive measurements into digital. These are all stored in memory so you can make decisions in firmware as to which nodes represent fingers touching the screen. You can almost think of it as a topographical or 3D contour map of the screen with the X and Y axes representing position and the 'Z height' representing the capacitive signal. So the tallest peaks on the map represent likely finger locations. Of course you get complexities introduced from water droplets, palms resting on the screen, or hovering fingers that you want to report as hovering objects rather than touches, and so on. All of these need good algorithmic techniques to effectively reject them

 

In self capacitance you take of all these same capacitive measurements in each X and Y axis and you have a profile or a single measurement per trace. You can think of it as a bar chart with the height of each bar symbolizing the capacitive measurement. And the number of bars is the total of number of X and Y traces. You can then use a center of mass style calculation (or similar algorithm) that computes the X-position and Y-position of the finger. As you can see you're looking at each axis independently so you don't have a datapoint per node as you do in mutual capacitance but as the article illustrates there are benefits from self capacitance for power consumption, moisture immunity and first touch latency.

 

To answer your other question a single broken trace will cause a dead spot along that particular trace where the touchscreen will become unresponsive. The further along the trace (i.e.- farther from the routing channel and closer to the end of the trace) that break is located, the smaller the dead zone will be. If the trace breaks right where it routes into the touchscreen from the bezel edge then effectively the entire trace will become a deadzone. The remaining part of the touchscreen will be usable though. 

 

Shar Narasimhan (author)

Atmel Corporation

 

TJ McDermott
User Rank
Blogger
A VERY educational primer
TJ McDermott   2/5/2014 12:55:00 AM
NO RATINGS
Thank you for the lesson covering capacitive sensing touch screens.

78RPM
User Rank
Platinum
Re: Capacitive Sensing
78RPM   2/2/2014 1:15:57 PM
NO RATINGS
Help me understand, Shar or taimoortariq or anyone else.  I had always thought that all the capacitance pixels of a phone or tablet were mapped to memory addresses.  The article is telling me that there are only two circuits; the X and Y axes.  Then there is some kind of capacitance profile that identifies the spot that is touched. What is that algorithm or neural network like?

A secondary question: Is it possible that a single break in either the X or Y axis could cause a single point of failure for the whole device?

taimoortariq
User Rank
Gold
Capacitive Sensing
taimoortariq   1/31/2014 3:46:16 PM
NO RATINGS
I still remember the amount of effort we had to do with resistive touches, Thanks for the elaboration of the sentive screen Shar, The science behind the touch screens is indeed fascinating.



Partner Zone
Latest Analysis
We take a look at 2015's top engineering schools by salary potential for undergraduate students.
If we are going to be creating a network that serves us, one of its most critical nodes will need to be ourselves. This is where wearable technology comes into play.
Researchers at the University of Maryland have achieved a first in lithium-ion battery science: the development of a successful lithium-based battery using one material for all three core components of a battery -- anode, cathode, and electrolyte.
The online Bar Steel Fatigue Database for automotive design engineers has been updated for the fifth time and now contains 134 iterations, or grade/process combinations. It provides better predictability for designing parts with long-term reliability and durability.
FPGAs use programmable fabric to create custom logic, but this flexibility comes at a cost -- usually around 10 times more silicon real estate and 10 times the power dissipation. Can we really claim any FPGA is low power?
More:Blogs|News
Design News Webinar Series
5/21/2015 11:00 a.m. California / 2:00 p.m. New York
5/7/2015 11:00 a.m. California / 2:00 p.m. New York
6/3/2015 8:00 a.m. California / 11:00 a.m. New York
6/11/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Jun 8 - 12, Everything You Ever Wanted to Know about Filters
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Course June 2nd-4th:
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service