HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Page 1/2  >  >>
Elizabeth M
User Rank
Blogger
Re: Breakthroughs
Elizabeth M   10/2/2013 8:27:15 AM
NO RATINGS
Thanks for that scientific perspective, William K, and your comment. I think, too, that this has major potential and hope it makes it out of the lab quickly so it can have the most impact.

Elizabeth M
User Rank
Blogger
Re: New materials
Elizabeth M   10/2/2013 7:51:11 AM
NO RATINGS
I appreciate that, etmax. It's nice to know that people are reading my stories and appreciate them. If you have any suggestions for topics you would like to see covered more, please let me know. Thanks!

etmax
User Rank
Gold
Re: New materials
etmax   10/2/2013 1:59:42 AM
NO RATINGS
You're so very welcome, you always offer good reading

Elizabeth M
User Rank
Blogger
Re: New materials
Elizabeth M   10/1/2013 10:56:59 AM
NO RATINGS
Thank you for the compliment, etmax, and for your comments. You're right that the development of this material has more applications, so let's hope it gets out there in the commercial market and starts making a difference soon.

etmax
User Rank
Gold
Re: New materials
etmax   9/30/2013 4:50:57 AM
NO RATINGS
if we are to consider the Sahara alone at 9.4 million sqkm as being able to produce 9.4e15 Whrs of electricity or over 600 times the current world need and there being so many other deserts that currently are only used to dehydrate camels I think the comparison with bio crops is probably not a good one, as bio crops use land and water that is needed to feed people and animals where as the best place to set up solar power stations is where there is no water and nothing grows except for the odd date palm around an oasis. Solar power has around a 20% recovery rate and splitting CO2 I would imagine might currently deliver 10-20% on what we put in but with improved catalysts this would hopeefully improve. Given that currently there is talk of putting solar shades into orbit to reduce the amount of heat accumulating down here, and that would in fact increase our dependence on fossil fuels I'm not sure these ideas are so far out there. It seems like using the sun to remove the CO2 is not such a bad idea even if it is lossy. Anyhow, I do understand your reservations and only time will tell what the solution might be.

William K.
User Rank
Platinum
Re: New materials
William K.   9/29/2013 7:24:04 PM
NO RATINGS
Given that any non-exothermic chemical or physical process requires more energy than it delivers, none of the processes described would be of much benefit, since it is most likely that there would not be enough solar energy captured to drive them. So they would be  more like growing corn to ferment into alcohol to burn for fuel, in that much less energy is delivered than is needed to create the fuel. Like the solar cell powering the light bulb to illuminate the solar cell. A McGuiverish sort of thing in that the words work but the numbers don't work.

etmax
User Rank
Gold
Re: New materials
etmax   9/28/2013 11:16:10 PM
NO RATINGS
Hi William, I think you missed my point regarding Carbon capture. It's not self sustaining of course, that would ber perpetual motion to which I do not subscribe.

The process would driven by solar power which is of course driven by the sun where we have 1kW per square meter of which we currently get around 14-40%. This is what drives the CO2 to C + O2 conversion which becomes stored energy in the same way that (over much gelogical time) we get coal except that coal is quite dirty. Pure C can by its very nature only give us CO or CO2 when it's burnt of which CO can be largely avoided if enough air is provided. In comparison to coal it is much cleaner and if the amount of C captured from the atmosphere each year were the amount burnt in power plants each year the the net addition of CO2 to the atmosphere would be zero. This is the "self sustaining" part which perhaps I didn't explain very well.

The fact that it's only 5-10% efficient at the moment it a bit of a deterrent but with the right catalysts (DOE's sponge??) that might move up to 30%.

The other process I mentioned is actually being researched somewhere in the US with DOE also doing research (can't recall where, try Google "Bromine water splitting") and works except that the reprocessing of the blocks is again very lossy which begs for a more efficient reprocessing method.

I'm sorry I didn't provide enough detail initially for you to understand what my thinking was. I can certainly trust you to hold me to task if I don't make myself clear :-)

William K.
User Rank
Platinum
Re: New materials
William K.   9/28/2013 9:32:34 PM
NO RATINGS
The energy needed to separate carbon dioxide into carbon and oxygen is more than you would recover by burning the carbon to generate power. So the process would never be close to self sustaining.

And the disociating of water into hydrogen and oxygen by pumping it through a catalyst likewise would take more power than it could deliver, although if you could capture a stream of water high in a mountain and have a pressure head of several hundred feetit might possibly work. BUT probably it would still cost a lot more to produce the power than the value of the power produced. So I would investigate very closely the credentials of anyone selling such a system. It sounds way to good to be true. A lot like that financial institution a few years back promising a 15% interest on deposits. Way to good to be believable. It turned out to be a Ponzi scheme.

etmax
User Rank
Gold
Re: New materials
etmax   9/27/2013 11:39:22 PM
NO RATINGS
Hi Liz,

thanks for the brilliant article.

The consequences are even more far reaching than batteries.

There's a technology being developed that pumps water through a catalyst that reacts violently splitting it into H & 2O at a fast enough rate for that to be fed to a hydrogen fuel cell which produces water as a, "exhaust" for reuse. The catalyst is eventually oxdised and must be sent for reprocessing which of course currently requires a lot of power. This would dramatically reduce the reprocessing cost. Imagine going to a service station and swapping a $20 canister of catalyst (and sponge) for your next 500km trip :-)

Then there's my pet project of reprocessing atmospheric CO2 in to C and O2 which current;y uses a fare bit of power. Imagine burning pure carbon in a power station resulting in CO2 emissions only (no sulphurs etc. etc. and then using solar (and wind) powered processing with a sponge material to create the fuel needed. No worry about lack of sun over night etc. (or wind for turbines) the carbon is essentially stored solar energy and being a solar powered closed cycle there's no climate impact.

William K.
User Rank
Platinum
Re: Breakthroughs
William K.   9/11/2013 9:39:50 AM
NO RATINGS
The creation of a material that has easily changed oxygen binding is a very big deal, since most oxygen binding is a quite strong bond that takes a great deal of energy to undo. A good example of that is rust: to go from rust back to iron takes LOTS of energy.

So if this material winds up being consistently producable at a reasonable price and production yield it could certainly be a game changer. Thanks for the report on what looks to me like a major discovery.

Page 1/2  >  >>


Partner Zone
Latest Analysis
Some of our culture's most enduring robots appeared in the 80s. The Aliens series produced another evil android, and we saw light robot fare in the form of Short Circuit. Two of the great robots of all time also showed up: The Terminator and RoboCop.
Two students have created a voice-command system for our homes, based on the simple and affordable Raspberry Pi.
Optomec's third America Makes project for metal 3D printing teams the LENS process company with GE Aviation, Lockheed, and other big aerospace names to develop guidelines for repairing high-value flight-critical Air Force components.
This Gadget Freak review looks at a cooler that is essentially a party on wheels with a built-in blender, Bluetooth speaker, and USB charger. We also look at a sustainable, rotating wireless smartphone charger.
Texas Instruments is rolling out a new microcontroller that could make the design of sensor networks and data logging systems simpler and less costly.
More:Blogs|News
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Aug 4 - 8, Introduction to Linux Device Drivers
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: August 12 - 14
Sponsored by igus
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service