HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Page 1/2  >  >>
Elizabeth M
User Rank
Blogger
Natural fit
Elizabeth M   7/11/2013 7:07:00 AM
NO RATINGS
It makes perfect sense to use plants to harvest solar energy in solar panels or cells, as they're nature's original solar-energy harvesters. I am only surprised this type of research hasn't been going on longer. I think if there can be a way to use this method commercially, it could be a real breakthrough in solar energy cell development and certainly make the cells more environmentally friendly.

Ann R. Thryft
User Rank
Blogger
Re: Natural fit
Ann R. Thryft   7/11/2013 6:46:54 PM
NO RATINGS
This does seem intuitively obvious in a hindsight kind of way, doesn't it? Thanks for reporting these results.

vimalkumarp
User Rank
Gold
Re: Natural fit
vimalkumarp   7/12/2013 1:18:28 AM
NO RATINGS
This is Biomimetics at its best...!

etmax
User Rank
Gold
Re: Natural fit
etmax   7/12/2013 9:34:11 AM
NO RATINGS
Thanks for posting, it's interesting stuff. I was however puzzled at the claim of 100% efficiency in plants (or for photosynthesis, so I googled it and got this from Wikipedia: "which results in an overall photosynthetic efficiency of 3 to 6% of total solar radiation". Sugarcane is the exception achieving up to 8% This is a far cry from the 24% achieved in labs for silicon photocells. Wikipedia talks about the theoretical maximum being ~40% for the wavelengths that plants utilise but a lot of real world stuff gets in the way. This match more closely what I remember.

Here's the link for those interested:

http://en.wikipedia.org/wiki/Photosynthetic_efficiency


I think maybe the boon here would be that they are sooo cheap that maybe acres could be covered for a few dollars (metaphorically)

karl
User Rank
Iron
Re: Natural fit
karl   7/12/2013 11:08:16 AM
NO RATINGS
The efficiency discussed in the Wikipedia article is for the conversion of sunlight into biomass. The starting point, 100%, is for the conversion of the entire bandwidth of sunlight that falls on the leaf into biomass. The calculation of inefficiencies begins with subtracting all bandwidth that is not bioavailable, then all that is reflected from the surface of the leaf, and all photons that strike components other than cloroplasts. Energy used to make sugar, and energy used to keep the plant alive in the dark or to maintian roots are also deducted. This is therefore a measure only of what ends up as new growth, or biomass (while from the "plant's point of view" the goal is survival as a whole, and job well done!)


The scientists in the article are likely referring to the efficiency of the thylakoids, starting with 100% of bioavailable wavelengths that actually strike the cloroplast, and at only the conversion to electrons after splitting the water molecule. In fact, I think they are referring to the efficiency of the thylakoid for conversion of light to electrons.

There is one other inneficiency cited in the Wiki article that may affect the accuracy of the claim by the scientists:

"24% of the absorbed photon energy is lost due to degrading short wavelength photons to the 700 nm energy level"

If this loss is after absorption by the cloroplast but before the conversion by the thylakoids, then the scientists may be referring only to the efficiency of the thylakoids.

If the resulting solor cell technology they create uses the modified thylakoids to directly convert sunlight into electrons then the only loss when measured as other solar cells are measured would be the 47% of non-bioavailable soar bandwidth, leaving at least 50% for conversion. That's quite a good conversion, and double current technology.

 

etmax
User Rank
Gold
Re: Natural fit
etmax   7/12/2013 11:33:41 AM
NO RATINGS
Thanks Karl, points well made but I think if you used the measure of how much of the solar radiation is a lattice match for Silicon (very narrow view) we would see higher numbers from silicon too up to 86% (although not as high as just the thylakoids). There's an IEEE article that suggests that quantum efficiencies of solar cells can exceed unity as sometimes two electrons are released for one photon. That's why I see narrowing the field of view to one thing only and not stating that is somewhat misleading. I'm not saying they are deliberately misleading us, more likely is a reporter left all of the stuff out he didn't understand resulting in the article.

Newel Stephens
User Rank
Silver
Re: Natural fit
Newel Stephens   7/12/2013 2:13:30 PM
NO RATINGS
Sometimes we can learn a lot from nature, but nature's way of doing things is not always the best way for humans to achieve the same purpose.  That is why we have airplanes instead of ornithopters.  Flapping wings work well for birds but would be way to complicated for a human-built flying machine.  The question will be if this process can improve upon the efficiency of our current solar cells, and I think it will take a lot of research and development to get there.

etmax
User Rank
Gold
Re: Natural fit
etmax   7/13/2013 5:26:17 AM
NO RATINGS
You have summed up something that is said too infrequently very well.

Elizabeth M
User Rank
Blogger
Re: Natural fit
Elizabeth M   7/15/2013 5:18:57 AM
NO RATINGS
Interesting observation, etmax. So it seems like we are catching a researcher in a bit of hyperbole. I think perhaps the greater benefit here is the organic nature of the material--better for the environment. And perhaps with engineering researchers can achieve even greater efficiency.

Elizabeth M
User Rank
Blogger
Re: Natural fit
Elizabeth M   7/15/2013 5:22:59 AM
NO RATINGS
I came a bit late to these comments so now I'm seeing yours, karl. So it seems that researchesr are not exaggerating and the figure is 100 percent efficiency for converting sunlight into energy? I think we can all agree this research provides an interesting prospect for organic solar cells and has some real potential to benefit their development. Thanks to everyone for bringing up these important points!

Page 1/2  >  >>


Partner Zone
Latest Analysis
Tesla Motors might be planning to boost the driving range of its two-seat Roadster to 400 miles.
RFID offers visibility into the plant. What inventory is being consumed? What stuff is being built? What's done and out the door?
More and more robots are becoming more autonomous all the time. Now Lockheed Martin has completed a demo mission with two completely autonomous robotic vehicles performing resupply, reconnaissance, surveillance, and target acquisition.
Take a look at the top 20 US undergraduate engineering programs. Then tell us -- did your school make the cut?
Producing high-quality end-production metal parts with additive manufacturing for applications like aerospace and medical requires very tightly controlled processes and materials. New standards and guidelines for machines and processes, materials, and printed parts are underway from bodies such as ASTM International.
More:Blogs|News
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Sep 8 - 12, Get Ready for the New Internet: IPv6
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service