HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Comments
View Comments: Newest First|Oldest First|Threaded View
<<  <  Page 3/3
Rob Spiegel
User Rank
Blogger
Re: Original by-line mislead me
Rob Spiegel   7/9/2013 2:45:00 PM
NO RATINGS
Actually, that makes perfect sense, GTOlover. If it's made to run fast, it should certainly do well running fast. At the manufacturing show in Philly last month, I saw some robots that moved mind-numbingly fast.

GTOlover
User Rank
Platinum
Original by-line mislead me
GTOlover   7/9/2013 11:46:35 AM
I read the by-line and immediately thought, "Another story about running a robot slow to keep it from wearing out or breaking." But it seems your isue was the timing of the weld gun in relation to the robot motion.

But to my first point, I have always wondered why technicians (most notably the maintenance guys) want to run a robot (servo robot no less) at a greatly reduced speed? I understand that end of arm tooling weight has some factor in this, but if the robot program allows you to run fast, then I expect the robot to be designed to handle this speed. If it wears out or breaks, that is the manufacturer of the robot issue. I figure if the manufacturer didn't want it to fall apart from running fast, they should of limited the maximum speed that I can set!

<<  <  Page 3/3


Partner Zone
Latest Analysis
Samsung's Galaxy line of smartphones used to fare quite well in the repairability department, but last year's flagship S5 model took a tumble, scoring a meh-inducing 5/10. Will the newly redesigned S6 lead us back into star-studded territory, or will we sink further into the depths of a repairability black hole?
Fifteen European research centers have launched EuroCPS to help European companies develop innovative products for the Internet of Things.
Get your Allman Brothers albums ready. The iconic Volkswagen Microbus may be poised for a comeback, and this time it could be electric.
In 2003, the world contained just over 500 million Internet-connected devices. By 2010, this figure had risen to 12.5 billion connected objects, almost six devices per individual with access to the Internet. Now, as we move into 2015, the number of connected 'things' is expected to reach 25 billion, ultimately edging toward 50 billion by the end of the decade.
NASA engineer Brian Trease studied abroad in Japan as a high school student and used to fold fast-food wrappers into cranes using origami techniques he learned in library books. Inspired by this, he began to imagine that origami could be applied to building spacecraft components, particularly solar panels that could one day send solar power from space to be used on earth.
More:Blogs|News
Design News Webinar Series
3/31/2015 11:00 a.m. California / 2:00 p.m. New York
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
5/7/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 20 - 24, Taking the Internet of Things to the Cloud
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service