HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
REGISTER   |   LOGIN   |   HELP
Page 1/2  >  >>
Ann R. Thryft
User Rank
Blogger
Re: Interesting development
Ann R. Thryft   1/15/2013 12:18:12 PM
NO RATINGS
Elizabeth, I think one of the things that makes it hard to wrap one's head around what this technology does, and can do, is calling it "printing." That label was applied for perfectly good reasons--the use of inkjet technology for laying down the layers--but it's also become confusing to many. OTOH, when I saw the first 3D models being made back in the late 80s, it was like looking at sci-fi ideas come alive. And that sense of wonder remains.

Ann R. Thryft
User Rank
Blogger
Re: Interesting development
Ann R. Thryft   1/14/2013 4:36:32 PM
NO RATINGS
Jack, the main use for 3D technology in auto production began with making one-off parts for high-end racing and/or classic cars. That's where this technology has been proven out for automotive uses. The main issues now are figuring out how to make machines that can participate in the high-speed, high-volume production environment of mainstream car manufacturing. The links at the end of this article will tell you more.

Elizabeth M
User Rank
Blogger
Re: Interesting development
Elizabeth M   1/14/2013 3:18:38 AM
NO RATINGS
Really, Ann? That's incredible...but I guess I should't be so surprised...there is a lot of investment in this technology these days. We've certainly come a long way form the days of the dot matrix!! (Sadly, I am old enough to remember!)

Jack Rupert, PE
User Rank
Platinum
Re: Interesting development
Jack Rupert, PE   1/12/2013 2:55:43 PM
NO RATINGS
Just read anuother article someplace else that alluded to the use of 3D printers for autos.  In that case, they were using them to make one-off parts for classic cars where you could no longer obtain the original.

Ann R. Thryft
User Rank
Blogger
Re: Interesting development
Ann R. Thryft   1/9/2013 4:38:13 PM
NO RATINGS
Clint, thanks for that feedback about casting. It's especially interesting to learn that the sand absorbs toxic residues and becomes a disposal problem. Ouch!

Ann R. Thryft
User Rank
Blogger
Re: Interesting development
Ann R. Thryft   1/7/2013 6:20:18 PM
NO RATINGS
Cabe, thanks for the input. This is definitely a high-end machine, not a competitor with Formlabs. I doubt the 1000R would be useful or cost-efficient for renting out to multiple users: it's a capital equipment purchase. Generally, owners of, say, semi fab equipment systems don't rent those out, either, even if they could be kept constantly running, and even if they were experienced EMS houses like Flextronics. However, that might be possible after a few more generations of this 3D technology, and after the system itself had been redesigned to accommodate that targeted use.

Cabe Atwell
User Rank
Blogger
Re: Interesting development
Cabe Atwell   1/7/2013 5:37:59 PM
NO RATINGS
I am sure this is not priced for the hobbyist market. If one of these 1000R could be set up to print constantly for smaller projects, the individuals out there who need something made, could it be cost effective? Or is it just for printing high markup items, price intangibles.

Once litigation is over, Formlab's 20 micron printer may give this a run for its money, literally.

C

CLMcDade
User Rank
Gold
Re: Interesting development
CLMcDade   1/7/2013 2:29:33 PM
NO RATINGS
Charles' observation was the first thing that came to mind when I read this article's headline.  However, even in mass production, the casting process is quite involved, requiring multiple steps.  While the lost-foam casting has reduced the time considerably, the foam patterns themselves must be manufactured first, and then the sand poured around them to create the casting mold.  When all the steps are added up, I wonder what the total time to cast a part is versus using rapid prototyping.

Another side benefit may be an environmental one - the sand used in metal casting usually absorbs toxic residue and must be treated before being disposed of.  I do not know what is involved in this step, but do know that here in the North and South Carolina area, a company had to pay upwards of a half a billion dollars to clean up the waste sand that it unknowingly donated for projects around this region.

Ann R. Thryft
User Rank
Blogger
Re: Interesting development
Ann R. Thryft   1/7/2013 11:53:25 AM
NO RATINGS
Chuck, Daimler's original intent was to replace die-casting and sand-casting of big metal components and prototypes. Apparently, the consistency of material properties between parts made with casting methods wasn't high enough. Neither is the part size: Daimler also wants to increase it, while maintaining light weight, by using this printer. That second reason is a pretty classic one in 3D printing of functional production parts.

Charles Murray
User Rank
Blogger
Re: Interesting development
Charles Murray   1/4/2013 5:51:04 PM
NO RATINGS
I'm amazed by this. Automakers have always used high-volume production techniques for a good reason -- the auto industry is all about high volume. That's why engineers have always been willing to put up with the two- or four- or six-week timeframe that's required to build tooling. When the tooling is completed, they can build 400 or 500 parts an hour. Thousands of parts a day. I wonder what kind of parts Daimler plans to build with this technology?

Page 1/2  >  >>


Partner Zone
Latest Analysis
Lumus and eyeSight have partnered to create consumer-grade devices that offer all the prime functions of smart glasses without the bulk.
VisLab joins the autonomous car effort with the DEEVA prototype.
NASA and Boeing developed a huge, carbon composite cryogenic fuel tank for deep space missions, and started testing it last month. The 18-ft cryotank will enable heavy-lift launch vehicles to send both humans and robots into deep space.
Focus on Fundamentals -- a new Design News webinar series -- kicks off April 29 with How to Select Drives for Robotics Applications. Don't miss it!
Research and other advancements in the realms of robotics, diagnostic and treatment devices, nanotechnology, and medical implants may one day make humans superior versions of their natural selves.
More:Blogs|News
Design News Webinar Series
3/27/2014 11:00 a.m. California / 2:00 p.m. New York / 7:00 p.m. London
2/27/2014 11:00 a.m. California / 2:00 p.m. New York / 7:00 p.m. London
12/18/2013 Available On Demand
11/20/2013 Available On Demand
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 21 - 25, Creating & Testing Your First RTOS Application Using MQX
SEMESTERS: 1  |  2  |  3  |  4  |  5


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: April 29 - Day 1
Sponsored by maxon precision motors
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service