HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Comments
View Comments: Newest First|Oldest First|Threaded View
<<  <  Page 2/2
JimT@Future-Product-Innovations
User Rank
Blogger
Strength and Size
JimT@Future-Product-Innovations   10/9/2012 1:00:17 PM
NO RATINGS
Ann - thanks for offering the large size baths that are still being developed.  I had no idea that 3D makers were developing apparatus that large. 6 meters square-?  That's enormous. That's about 50 feet across diagonal; large enough to make a wingspan frame.  Wow.

Ann R. Thryft
User Rank
Blogger
Re: Strength
Ann R. Thryft   10/9/2012 12:35:16 PM
NO RATINGS
Chuck, I looked all over for build volume and printer size with no luck. The only clue is that it's designed to build components of large aircraft structures. I'm guessing several feet per side of build volume. Very large 3D printers exist in architectural apps for use with sand and soil and their build volumes can be 2m x 2m x 5m up to 6m x 6m x 2m, and even larger in the works.

Charles Murray
User Rank
Blogger
Re: Strength
Charles Murray   10/8/2012 6:33:13 PM
NO RATINGS
Ann, do we know how big the printer is, or how big the parts can be?

Dave Palmer
User Rank
Platinum
Re: Strength
Dave Palmer   10/8/2012 1:06:21 PM
NO RATINGS
@naperlou: Selective laser sintering typically doesn't yield a fully-dense part, so the mechanical properties would be significantly inferior to those of a forging.  On the other hand, it has been shown that selective laser sintering followed by hot isostatic pressing can give mechanical properties equivalent to conventionally-processed titanium.

It seems like a good move for South Africa to go from an exporter of raw materials to a manufacturer of high-tech components.  Other developing countries could benefit from this example.

Cadman-LT
User Rank
Platinum
Great article
Cadman-LT   10/8/2012 1:04:26 PM
NO RATINGS
Great article Ann. I always like learning about the new things they are doing with 3D printing. Titanium now, what's next? Keep the articles coming!

Ann R. Thryft
User Rank
Blogger
Re: Strength
Ann R. Thryft   10/8/2012 12:35:30 PM
NO RATINGS
Lou, the strength of the PM/sintered titanium powder metal parts produced by Dynamet has received approval from Boeing for use in structural aircraft parts, after a few years of testing. That news is pretty amazing on its own. The fact that Airbus has signed on to the Aeroswift aircraft structures project to help test selective laser-sintered titanium parts is another vote of confidence. It will be interesting to see what happens during that test phase.



naperlou
User Rank
Blogger
Strength
naperlou   10/8/2012 10:48:16 AM
NO RATINGS
Ann, this is interesting news.  One question I would have is on the strength of the materials.  In general, machined materials are stronger than injection molded materials.  Of course, if the strength is enough for the purpose, then that is enough.  Then the speed of manufactur is all important.

<<  <  Page 2/2


Partner Zone
Latest Analysis
Samsung's Galaxy line of smartphones used to fare quite well in the repairability department, but last year's flagship S5 model took a tumble, scoring a meh-inducing 5/10. Will the newly redesigned S6 lead us back into star-studded territory, or will we sink further into the depths of a repairability black hole?
Fifteen European research centers have launched EuroCPS to help European companies develop innovative products for the Internet of Things.
Get your Allman Brothers albums ready. The iconic Volkswagen Microbus may be poised for a comeback, and this time it could be electric.
In 2003, the world contained just over 500 million Internet-connected devices. By 2010, this figure had risen to 12.5 billion connected objects, almost six devices per individual with access to the Internet. Now, as we move into 2015, the number of connected 'things' is expected to reach 25 billion, ultimately edging toward 50 billion by the end of the decade.
NASA engineer Brian Trease studied abroad in Japan as a high school student and used to fold fast-food wrappers into cranes using origami techniques he learned in library books. Inspired by this, he began to imagine that origami could be applied to building spacecraft components, particularly solar panels that could one day send solar power from space to be used on earth.
More:Blogs|News
Design News Webinar Series
3/31/2015 11:00 a.m. California / 2:00 p.m. New York
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
5/7/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 20 - 24, Taking the Internet of Things to the Cloud
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service