HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
naperlou
User Rank
Blogger
Optimization
naperlou   10/3/2012 1:20:24 PM
NO RATINGS
Beth, this is where CAE codes make a big difference.  It is possible to explore a large part of the design space in the computer.  This gives the design team the ability find optimal, or near optimal, parameters for their rel-world testing.

Another interesting aspect is the cloud for CFD.  These are highly parallel simulations that seem more amenable to massive parallel solutions.  It is also interesting to see that this is a public cloud solution.

Charles Murray
User Rank
Blogger
Re: Optimization
Charles Murray   10/3/2012 6:45:20 PM
NO RATINGS
This makes sense, Beth. Wind tunnels are both time-consuming and expensive, aren't they?

TJ McDermott
User Rank
Blogger
Re: Optimization
TJ McDermott   10/3/2012 11:22:10 PM
NO RATINGS
Wind tunnel testing is necessary in order to validate the results.  Remember Microsoft's Excel math mistakes?  If an error like that crept into CFD calculations, the results could get "interesting".

 

Rob Spiegel
User Rank
Blogger
Re: Optimization
Rob Spiegel   10/4/2012 12:36:49 AM
NO RATINGS
This is a great use of simulation, Beth. Incredibly improved efficiency. This same approach is getting used in building plants and setting up systems. simulation prior to build is saving both time and money.

Beth Stackpole
User Rank
Blogger
Re: Optimization
Beth Stackpole   10/4/2012 7:26:27 AM
NO RATINGS
@TJ: Wind tunnel testing is definitely still necessary, no doubt. What the team at Michael Waltrip is saying it that by leveraging simulation (and eventually even more high performance compute horsepower offered by the cloud), they can test out more possibilities and then use the wind tunnel testing (which is limited due to budgets) for validation of the best designs. Helps them explore more possibilities more efficiently and cost effectively--a refrain I hear consistently from simulation users.

RICKZ28
User Rank
Platinum
Aerodynamics
RICKZ28   10/4/2012 12:00:50 PM
NO RATINGS
Beth,

Interesting analogy...NASCAR is like an "arms race".  Of course the arms race is within the rules, and it depends on how the drivers and teams perform during the race.  The competition is cutthroat, and that's part of the reason for NASCAR's popularity.

As for aerodynamics, it definitely plays a big role on the longer faster tracks.  A damaged car body at Daytona or Talladega can rarely keep pace with the front runners, aerodynamics is just too critical at 190-210 miles per hour.  Many non-fans have noticed the NASCAR "drafting", where at high-speed, two or more cars lined-up are faster than one car alone.

Watch the NASCAR race at Talladega Superspeedway (2.66 mile tri-oval with 33 degree high-bank turns) this Sunday (Oct 7th) to see why aerodynamics is so important in high-speed races.  There is usually a huge number of lead changes during the race, 50 or more lead changes is not uncommon.  The race record is a 188 mph speed average, qualifying record 212 mph.  Frequently there is last lap passes to win the race, as the driver's know how to use aerodynamics to make passes ("overtaking" for you F1 people).

Beth Stackpole
User Rank
Blogger
Re: Aerodynamics
Beth Stackpole   10/5/2012 6:47:22 AM
NO RATINGS
@RICKZ28: The arms race analogy is certainly different, but the Michael Waltrip team's choice of words, not mine. And you are right, aerodynamics is a huge design challenge for these racing teams. In fact, there are many, many stories about other race car teams leveraging advanced simulation software to do more of the same. Interesting, because these teams are out in front in terms of how they're incorporating simulation into their design workflows compared with many engineering organizations in traditional companies.

RICKZ28
User Rank
Platinum
Re: Aerodynamics
RICKZ28   10/8/2012 5:05:25 PM
NO RATINGS
Michael Waltrip was going for the win on the last lap of the race at Talladega Superspeedway (Sunday, Oct 7, 2012)...so he did a good job in putting himself in a good position at the end of the race.  Unfortunately, he got caught-up in a huge last lap crash, finished 25th.

I did enjoy the 54 lead changes during the 500 mile race (and that's only "official" lead changes at the start/finish line), as well as the fast 171 mph average speed.  The high-speed race was all about the use of aerodynamics, including drafting.

bobjengr
User Rank
Platinum
CFD AND NASCAR
bobjengr   10/8/2012 6:11:39 PM
NO RATINGS
 Beth, one of the most fascinating demonstrations I have seen in the recent past was given by the SIM Center at the University of Tennessee at Chattanooga.  It was a demonstration of the power of CFD in investigating air movement around 18 wheelers traveling at varying speeds.  Grant money was furnished by the National Highway Traffic Safety Administration (NHTSA) and Peterbuilt.  As a part of the demo, we were able to see how variations in cowling and "hardware" made differences in air patterns slipping over exterior surfaces of the cabs and trailers.  I'm sure NASCAR could benefit from CFD and save hundreds of hours devoted to "cut and try".  Great article.

Beth Stackpole
User Rank
Blogger
Re: CFD AND NASCAR
Beth Stackpole   10/9/2012 7:17:58 AM
NO RATINGS
Thanks Bob. That sounds like quite an informative presentation. May I ask what the purpose of the demonstration was and who the audience was? Was it's purpose to promote CFD specifically?

bobjengr
User Rank
Platinum
Re: CFD AND NASCAR
bobjengr   10/10/2012 7:53:04 PM
NO RATINGS
 Beth, right after the SIM Center moved from Mississippi State to UT Chattanooga, the Center arranged an open house for engineers interested in learning more about CFD.  I went.   The prospect of combining fluid dynamics with CAE really fascinated me.  I was blown away by the capability of the software and the modeling techniques.  The first demonstration used a tractor/trailer combination and modeling air flow around the cab and trailer at various speeds.     The second model demonstrated air flow around an F- 18 Hornet and how that air flow varied when airfoil surfaces came into play.  The graphics were absolutely stunning.  One thing I came away with was the close correlration between model and reality.  In the "old days", reality was hard to come by due to issues with the mathematical algorithm.   An approximation within 25% was considered to be "state-of-the-art".  Times have really changed.

Beth Stackpole
User Rank
Blogger
Re: CFD AND NASCAR
Beth Stackpole   10/11/2012 11:01:12 AM
NO RATINGS
Thanks for the added detail, Bob. You're absolutely right about the challenge of modeling to reality, however. While your 25% percent approximation figure has been greatly improved with the latest technology, it's still one of the challenges around CFD and simulation in general.

notarboca
User Rank
Gold
Re: CFD AND NASCAR
notarboca   10/18/2012 2:43:14 PM
NO RATINGS
NASCAR is one of the most interesting "playgrounds" for engineering and cutting edge tools.  Before I became a NASCAR fan, I thought they just got a showroom car and put a huge motor in it.  Oh no, so much more! Design of roll cages and frames for driver safety, spring rates and shock response under varying conditions, engine building and tuning, aerodynamics. etc.  F1 racing seems to have more electronic control over various parameters while the car is on the racetrack, while also using engineering applications in the design and test phases.  A lot of engineers have found their "happy place" in the world of motorsports.



Partner Zone
Latest Analysis
Here's a variety of views into the complex production processes at Santa's factory. Happy Holidays!
The Beam Store from Suitable Technologies is managed by remote workers from places as diverse as New York and Sydney, Australia. Employees attend to store visitors through Beam Smart Presence Systems (SPSs) from the company. The systems combine mobility and video conferencing and allow people to communicate directly from a remote location via a screen as well as move around as if they are actually in the room.
Thanks to 3D printing, some custom-made prosthetic limbs, and a Lego set, one lucky dog and a tortoise has learned new tricks.
An MIT research team has invented what they see as a solution to the need for biodegradable 3D-printable materials made from something besides petroleum-based sources: a water-based robotic additive extrusion method that makes objects from biodegradable hydrogel composites.
With Radio Shack on the ropes, let's take a memory trip through the highlights of Radio Shack products.
More:Blogs|News
Design News Webinar Series
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
12/10/2014 8:00 a.m. California / 11:00 a.m. New York
11/19/2014 11:00 a.m. California / 2:00 p.m. New York
11/6/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  67


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service