HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
<<  <  Page 8/8
Amclaussen
User Rank
Platinum
Now we are talking same language!
Amclaussen   3/4/2013 3:31:11 PM
NO RATINGS
I am confident that the loss of self-centering (restoring) force on the steering wheel that you previously referred as "torque-steer" is a result of front wheel drive non-optimal geometry when subjected to simultaneous turning and large torque application.  It is the same sensation referred in the Car and Driver article when describing the lack of return-to-center of the steering wheel in the powerful dodge SRT-4 that did not returned to center when accelerated. That the SRT-4 did NOT pull in the same direction of the turn means that in that respect, the overall steering design of the Dodge is better done than that V6 Honda, no doubt!

The sensation is VERY unpleasant, to say the least...  specially when the lock to lock ratio has many turns in it.  I clearly remember one of my first cars, a 2-door Valiant Duster (the mexican version of the Plymouth Duster) with the slant six 225 engine, manual steering with 24:1 ratio... in a slow turn, if I suddenly applied more than half accelerator without holding the steering wheel, the damn thing turned the steering into the turn until reaching the lock end!  It turned out that that was a new model platform, and that the factory did a mistake and set the front suspension on entirely wrong settings.  Once corrected camber/caster and toe (partially), that maddening tendency was subdued but not entirely fixed.  Best Regards.

 

Ivan Kirkpatrick
User Rank
Platinum
Re: Now we are talking same language!
Ivan Kirkpatrick   3/4/2013 3:42:41 PM
NO RATINGS
I remember the torque steer on the honda as being in effect in either direction of a turn.  Left or right the car would pull significantly in the direction of the turn.  I attributed this to the outside wheel receiving more if not all of the engine torque.  Perhaps front wheel differentials are different than the rear wheel ones I used to deal with.  the differentials I am familiar with only supply equal torque when the rotations of the output shafts are identical.  If one wheel is rotating slower than the other in a turn then the torue is essentially applied to the faster wheel only.

Your explanation would indicate the torque from the engine is applied equally at least as far as the differential output shaft and varous other factors produce the torque steer effect.  

I guess there are still some issues I don't quite follow regarding the front wheel differentials.  the papers you referred to would seem to indicarte that torque steer is a usually subtle affect based on steering geometry and torsional stiffness of the drive train on each wheel.  I thought it was a rather direct function of the differential.

<<  <  Page 8/8


Partner Zone
Latest Analysis
Time was when sports equipment was made only from common, everyday, low-tech materials. But now sports equipment has a new, high-tech ingredient that is helping players take their game to the next level.
Every now and then Design News likes to revisit some of our favorite Gadget Freak projects. Robotic hands, manipulated Kindles, and smart recycling cans round out the latest crop.
A humanoid diving robot has recovered treasure from the wreck of French King Louis XIV's flagship, untouched for nearly 400 years. The bot not only looks somewhat human-shaped, it's also got stereoscopic humanlike vision, artificial intelligence, and haptic force feedback.
Design collaboration now includes the entire value chain. From suppliers to customers, purchasing to outside experts, the collaborative design team includes internal and external groups. The design process now stretches across the globe in multiple software formats.
Researchers have developed a hybrid energy harvester for generating electricity from multiple spectrums of solar energy.
More:Blogs|News
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7 | 8 | 9


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Technology Marketplace

Copyright © 2016 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service