HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Doug Cook
User Rank
Silver
Re: Fused deposition modeling of ANYTHING !
Doug Cook   8/14/2012 3:23:24 PM
Customization is also key, particularly for orthotics/prosthetics.

 

Note, too, that this is a commercial application.  There is research being conducted on other composites, including functionally-gradient ones, that use extrusion-based deposition.

 

Ann R. Thryft
User Rank
Blogger
Re: Fused deposition modeling of ANYTHING !
Ann R. Thryft   8/10/2012 12:04:54 PM
Jim, thanks for that very specific injection molding example. Since Stratasys and Oak Ridge are at the beginning of the 3D-produced carbon composites research project, they're still defining parameters and performance targets. In composite manufacturing, there are a lot of variables and everything's contextual.

JimT@Future-Product-Innovations
User Rank
Blogger
Re: Fused deposition modeling of ANYTHING !
JimT@Future-Product-Innovations   8/9/2012 11:20:15 PM
Recalling a particularly high-volume job I once designed, being a fully-automated 2-cavity, injection molding operation which produced a thin-walled plastic cell-phone housing at a molding cycle time of about 20 seconds ,,,,, That's 6 parts/minute. 

So the point raised about production molding cycle time vs FDM cycle time is a very valid point; and that 2 cavity example was a run-rate that I truly doubt any deposition process could ever match, (let alone, exceed).

But the tool cost of that set-up was around $280,000 as I recall, and the deposition process set-up is nearly zero by comparison; so we need to remember all of the variables in the equation for economy. 

I applaud and eagerly watch the FDM experiments advance.

Ann R. Thryft
User Rank
Blogger
Re: Fused deposition modeling of ANYTHING !
Ann R. Thryft   8/8/2012 1:20:22 PM
NO RATINGS
Since they're working on both materials and processes, like those researching non-3D assembly, the material will most likely not involve resins that need to be cured. Many of the attempts at automating carbon fiber composite production are either developing much faster-drying resins, or avoiding them entirely. Regarding increasing speed, well, that's the main point of this research.

Jerry dycus
User Rank
Gold
Re: Fused deposition modeling of ANYTHING !
Jerry dycus   8/7/2012 3:17:37 PM
NO RATINGS
 

  A lot depends on how much, fast it  can put material down.  Unless very quick or only 1-3 units needed, it's going to be hard to beat using molds either either hand or machin layup.

  Now with the mold making by machine/Cad, making a mold costs little inhouse leaving little start up costs in that technic.

Whether it needs an autoclave depends on the resin chosen mostly.

But even their the mold can be designed to be heated so spray fibered resin by hand or machine and be it's own autoclave taking little more room.  It's how I normally handle faster curing. Since most curing produce their own heat just insulation could do with many resins.

The range of printed items from so many new materials including metals will change a lot of things but is likely too slow compared to well done mass production, at least for now.

 

 

Ann R. Thryft
User Rank
Blogger
Re: Fused deposition modeling of ANYTHING !
Ann R. Thryft   8/7/2012 2:12:56 PM
NO RATINGS
Jim, considering all the hassles involved, not to mention costs, of producing carbon composites and all the R&D being pursued for faster, cheaper production methods, it boggles the mind that we could simply solve the problem by making them with FDM. But why not? This project is aiming not just dollars but some pretty creative and experienced brains at the problem. Maybe you're right: if we can solve this problem, then maybe FDM can be applied to a lot of other materials not considered before for AM techniques.

JimT@Future-Product-Innovations
User Rank
Blogger
Fused deposition modeling of ANYTHING !
JimT@Future-Product-Innovations   8/7/2012 1:10:26 PM
NO RATINGS
Really a fantastic concept, Ann.  When I think back to the first days of rapid prototyping and remember wondering "who came up with the idea of solidifying liquid polymer with a laser?"  Then, I look at this technology effort and am confident that it, too, will succeed as just one more example in our human journey of discovery. The explanation of the spindle-like carbon fibers being delivered via a filament brought a pretty clear image of intent, and I don't doubt they will eventually accomplish their goal. What a fantastic thought, really;  perhaps we can eventually FDM virtually any material?

Ann R. Thryft
User Rank
Blogger
Re: Unsure of term
Ann R. Thryft   8/6/2012 12:34:56 PM
NO RATINGS
Yes, TJ, that's one of the biggest deals about this project. Autoclave ovens are big, expensive and slow. Getting rid of them in one way or another is one of the goals behind several different research projects on speeding up carbon composite production, including this one we reported on earlier this year:
http://www.designnews.com/document.asp?doc_id=239474
"Out of autoclave" is to composite production a bit like "Open sesame" was for Aladdin trying to open the cave.

TJ McDermott
User Rank
Blogger
Unsure of term
TJ McDermott   8/6/2012 10:03:39 AM
Ann, the article uses the term "out of autoclave" several times.  Does this mean the composite parts are fabricated without the use of an autoclave for curing?



Partner Zone
Latest Analysis
ABI Research, a firm based in the UK that specializes in analyzing global connectivity and other emerging technologies, estimates there will be 40.9 billion active wirelessly interconnected “things” by 2020. The driving force is the usual suspect: the Internet of Things.
Just in time for Earth Day, chemicals leader Bayer MaterialScience reported from the UTECH Europe 2015 polyurethane show on programs and applications using its materials to help reduce energy usage. The company also gave an update on its CO2-based PU as that eco-friendly material comes closer to production.
Solar and wind energy are becoming more viable as a source of energy on the electric grid. For decades, the major drawback to solar and wind was that they’re temperamental. A cloudy day kills solar and a still day renders the wind turbines useless. Automation tools, however, are providing a path to help these renewables become practical.
In honor of Earth Day, the National Security Agency has launched the STEM Recycling Challenge in Maryland schools to encourage kids to think about where the garbage they throw out every day actually goes. The agency has also introduced “Dunk,” a muscular blue cartoon recycling bin wearing shorts and sneakers.
If you’ve noticed the recent news about electric cars and batteries, then it’s easy to wonder about the continuing wisdom behind public subsidies for EVs.
More:Blogs|News
Design News Webinar Series
3/31/2015 11:00 a.m. California / 2:00 p.m. New York
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
5/7/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 20 - 24, Taking the Internet of Things to the Cloud
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service