HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Comments
View Comments: Newest First|Oldest First|Threaded View
<<  <  Page 2/2
Rob Spiegel
User Rank
Blogger
Re: Thank you
Rob Spiegel   6/7/2012 9:21:06 AM
NO RATINGS
Thanks Ann. Sounds like steel still has a strong foothold in automotive. If steel can continue to develop stronger, lighter alternatives, it sounds like the steel industry can hold its own in cars.

Ann R. Thryft
User Rank
Blogger
Re: Thank you
Ann R. Thryft   6/6/2012 4:32:46 PM
NO RATINGS
Rob, there are definitely industry differences. Generally speaking, aerospace has been using composites, both glass and carbon fiber-based, for decades, first in military planes and more recently in commercial aircraft (as well as in spacecraft). Whereas in cars it's more recent and confined primarily to race or specialty cars. Regarding metals, steel doesn't figure much in aircraft because of its weight; the primo metal there is aluminum. Metals in most commercial planes still average over 50%. In Detroit cars, metals are a much higher proportion, primarily because of the cost of composites and the difficulty in adapting their manufacturing to highly automated, high-volume automotive production. All of this is a moving target.

Rob Spiegel
User Rank
Blogger
Re: Thank you
Rob Spiegel   6/6/2012 2:53:55 PM
NO RATINGS
Ann, is there an industry component to whether new composites or legacy metals tend to win the lightweight argument? Seems that aerospace likes components. In the auto industry is there more bias toward steel? Or am I reading this incorrectly?

Ann R. Thryft
User Rank
Blogger
Re: Thank you
Ann R. Thryft   6/6/2012 11:52:07 AM
NO RATINGS
Dave, thanks for the feedback. I was impressed with the thorough, detailed approach this study took to the materials decision making process. There's been a lot more news about composites than about metals and, in fact, many of the R&D efforts I've reported on are new materials. Also, I've had a tough time getting many metals companies to talk to me about lightweighting, especially in the steel industry, especially for automotive applications. So thanks for the info about carburized steel. What I'm especially interested in is structural applications and AHSS, as well as titanium and magnesium in aerospace and/or automotive apps.

Dave Palmer
User Rank
Platinum
Thank you
Dave Palmer   6/6/2012 11:18:40 AM
NO RATINGS
@Ann: Thank you, thank you, thank you for this article.  There are some people who think that "lightweighting" means "make it out of plastic." This tends to go hand in hand with an idea that aluminum and steel are "old materials," while plastics and composites are "new materials."

The fact is that aluminum and steel technologies are hardly standing still.  If you want evidence, just look at the new carburizing steels which QuesTek has developed.  These alloys were developed from the ground up, starting with computational models.   This is an exciting approach, which I think will bear even more fruit in the future.

Rob Spiegel
User Rank
Blogger
Legacy materials fight back
Rob Spiegel   6/6/2012 9:17:56 AM
NO RATINGS
It has been interesting to see steel fight back against new materials. Legacy materials and systems benefit from technology as well as new materials. Another example is the internal combustion engine. It may get so efficient that it edges out hybrids and EVs for consumers wanting to go green.

<<  <  Page 2/2


Partner Zone
Latest Analysis
Conventional wisdom holds that MIT, Cal Tech, and Stanford are three of the country’s best undergraduate engineering schools. Unfortunately, when conventional wisdom visits the topic of best engineering schools, it too often leaves out some of the most distinguished programs that don’t happen to offer PhD-level degrees.
Sherlock Ohms highlights stories told by engineers who have used their deductive reasoning and technical prowess to troubleshoot and solve the most perplexing engineering mysteries.
Airbus Defence and Space has 3D printed titanium brackets for communications satellites. The redesigned, one-piece 3D-printed brackets have better thermal resistance than conventionally manufactured parts, can be produced faster, cost 20% less, and save about 1 kg of weight per satellite.
A group of researchers at the Seoul National University have discovered a way to take material from cigarette butts and turn it into a carbon-based material that’s ideal for storing energy and creating a powerful supercapacitor.
Hacking has a long history in the movies, beginning with Tron and War Games and continuing through The Girl with the Dragon Tattoo.
More:Blogs|News
Design News Webinar Series
9/10/2014 11:00 a.m. California / 2:00 p.m. New York
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Sep 22 - 26, MCU Software Development – A Step-by-Step Guide (Using a Real Eval Board)
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service