HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
<<  <  Page 2/2
Zippy
User Rank
Platinum
Aerodynamic vacuum
Zippy   6/5/2012 11:14:27 AM
NO RATINGS
The comment about the aerodynamic vacuum under these cars at speed reminded me of the Chaparral 2J car from the Can-Am series in the 70's.  The car has side skirts and an on-board "vacuum cleaner' powered by a snowmobile engine which generated a downforce which exceeded the weight of the car.  It was so much faster than the competition that it was banned under a questionable rule interpretation.  Unfortunately, engineering brilliance in car racing can be overruled by the need to put on a good race for the fans (unfortunate) or by the need to hold down top speeds for safety reasons (probably a good idea).

 

Details here:

http://en.wikipedia.org/wiki/Chaparral_Cars

 

Beth Stackpole
User Rank
Blogger
Re: Lessons carry to engineers in other sectors
Beth Stackpole   6/4/2012 4:24:12 PM
NO RATINGS
Absolutely, there is far less room for error (likely no room in fact) for those 500 miles since at those speeds, lives are at stake. One teensy, little glitch in something as small as a misplaced fastener, and you could be primed for disaster.

Charles Murray
User Rank
Blogger
Re: Lessons carry to engineers in other sectors
Charles Murray   6/4/2012 3:39:40 PM
NO RATINGS
Good point, Beth. It's amazing to learn that IndyCar's number one engineering challenge -- vehicle reliability -- is the same as for production cars. It's true they only need to go 500 miles at the Indy 500, but it doesn't mean that reliability is any less important. In fact, a simple failure -- like the one on Parnelli Jones' vehicle in 1967 -- can be devastating.

Beth Stackpole
User Rank
Blogger
Lessons carry to engineers in other sectors
Beth Stackpole   6/4/2012 8:20:14 AM
NO RATINGS
Nice job Chuck, on translating the thrill of racing into engineering challenges that other engineers, even if they don't work on the race car circuit, can relate to and are grappling with every day for their own types of products. Those minor design tweaks and keen attention to simulation outcome are what can set one company's offering apart from another--whether it's a highly competitive IndyCar race or components for commercial cars.

<<  <  Page 2/2


Partner Zone
Latest Analysis
The engineers and inventors of the post WWII period turned their attention to advancements in electronics, communication, and entertainment. Breakthrough inventions range from LEGOs and computer gaming to the integrated circuit and Ethernet -- a range of advancements that have little in common except they changed our lives.
The age of touch could soon come to an end. From smartphones and smartwatches, to home devices, to in-car infotainment systems, touch is no longer the primary user interface. Technology market leaders are driving a migration from touch to voice as a user interface.
Soft starter technology has become a way to mitigate startup stressors by moderating a motor’s voltage supply during the machine start-up phase, slowly ramping it up and effectively adjusting the machine’s load behavior to protect mechanical components.
A new report from the National Institute of Standards and Technology (NIST) makes a start on developing control schemes, process measurements, and modeling and simulation methods for powder bed fusion additive manufacturing.
If you’re developing a product with lots of sensors and no access to the power grid, then you’ll want to take note of a Design News Continuing Education Center class, “Designing Low Power Systems Using Battery and Energy Harvesting Energy Sources."
More:Blogs|News
Design News Webinar Series
3/31/2015 11:00 a.m. California / 2:00 p.m. New York
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
5/7/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
May 4 - 8, Designing Low Power Systems using Battery and Energy Harvesting Energy Sources
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service