HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
<<  <  Page 2/2
ervin0072002
User Rank
Gold
Re: Why didn't engineers correctly predict shockwaves?
ervin0072002   4/27/2012 9:15:13 AM
NO RATINGS

Hey Ann,

 

The reason is our ability to predict turbulence. Some simulation software has gotten close. But to date we can only predict tested conditions. The facts behind turbulence are still largely guessed and even after a good bit of aviation history we are still working on the kinks. I have been to several meetings with mathematicians that are leaders in this field. It's difficult for them to predict with any great accuracy. Yes 10000% error is outrageous but it's possible in a field we are infants on.

 

Charles Murray
User Rank
Blogger
Re: Why didn't engineers correctly predict shockwaves?
Charles Murray   4/26/2012 8:12:37 PM
NO RATINGS
That's a good question, Ann. The fact that it travelled successfully for three minutes might indicate that the shock wave was a sudden anomaly shortly before it failed (I can't imgine any design standing up to 100X loads for three minutes). Still, it's hard to imagine why no one foresaw a shockwave of this magnitude.

Ann R. Thryft
User Rank
Blogger
Why didn't engineers correctly predict shockwaves?
Ann R. Thryft   4/26/2012 2:21:52 PM
NO RATINGS

I guess what's not clear to me is, why was the aircraft designed to withstand shockwaves 100 times LESS strong than it actually experienced? I'm especially surprised since this was apparently the second flight, not the first. Why didn't engineers do a better job of prediction?


TJ McDermott
User Rank
Blogger
Re: 100x Performance Factor
TJ McDermott   4/26/2012 10:41:33 AM
One learns most from failures.

williamlweaver
User Rank
Platinum
100x Performance Factor
williamlweaver   4/26/2012 7:41:18 AM
NO RATINGS
I recall several publications and reporters reveling in the "failure" of the HTV-2 test back in August. But the ability to withstand forces 100x greater than design specifications and still manage to deploy a controlled abort should be a success in everybody's metrics. Controlled flight at Mach 20 for 3 minutes should have provided a wealth of telemetry. And these are the unclassified tests.... exciting.

<<  <  Page 2/2


Partner Zone
Latest Analysis
The engineers and inventors of the post WWII period turned their attention to advancements in electronics, communication, and entertainment. Breakthrough inventions range from LEGOs and computer gaming to the integrated circuit and Ethernet -- a range of advancements that have little in common except they changed our lives.
The age of touch could soon come to an end. From smartphones and smartwatches, to home devices, to in-car infotainment systems, touch is no longer the primary user interface. Technology market leaders are driving a migration from touch to voice as a user interface.
Soft starter technology has become a way to mitigate startup stressors by moderating a motor’s voltage supply during the machine start-up phase, slowly ramping it up and effectively adjusting the machine’s load behavior to protect mechanical components.
A new report from the National Institute of Standards and Technology (NIST) makes a start on developing control schemes, process measurements, and modeling and simulation methods for powder bed fusion additive manufacturing.
If you’re developing a product with lots of sensors and no access to the power grid, then you’ll want to take note of a Design News Continuing Education Center class, “Designing Low Power Systems Using Battery and Energy Harvesting Energy Sources."
More:Blogs|News
Design News Webinar Series
3/31/2015 11:00 a.m. California / 2:00 p.m. New York
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
5/7/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
May 4 - 8, Designing Low Power Systems using Battery and Energy Harvesting Energy Sources
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service