HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Alexander Wolfe
User Rank
Blogger
Migrating stress cracks versus quick breaks
Alexander Wolfe   3/23/2012 9:08:17 AM
NO RATINGS
Could you do an explanation in a future post of the differences between a part (say, a bracket on a car) failing due to a migrating stress fracture versus a total, quick failure where it just breaks in two? Is that the same stress dynamic in play with different outcomes, or are they different processes entirely?

Dave Palmer
User Rank
Platinum
Re: Migrating stress cracks versus quick breaks
Dave Palmer   3/23/2012 10:07:35 AM
NO RATINGS
@Alex: Usually, a crack which grows over time is due to fatigue, which I'll cover in my next installment. (In plastic parts, cracks which grow over time could also be due to environmental stress cracking, which I've written about before. In metals, there is a phenomenon called stress corrosion cracking, which is analagous to environmental stress cracking; I might write about this later).

Based on what I've seen in my career, fatigue failures are actually far more common than overload failures.  However, overload failures are the easiest to understand, which is why I wanted to cover them first.

The mechanics of fatigue are a little more complicated.  As I'll discuss, a common mistake is to treat "fatigue strength" as though it's a property like yield strength or ultimate tensile strength.  It's not.  But the big picture is the same: you need to understand the forces that act on the part, and the properties of the material from which it is made -- as well as all of the variables which might cause either one to vary from its normal value.

Charles Murray
User Rank
Blogger
Re: Migrating stress cracks versus quick breaks
Charles Murray   3/23/2012 6:37:37 PM
NO RATINGS
Dave: In the kinds of parts that are mentioned here, such as the brake cam, are the parts typically designed in accordance with the yield strength of the material, or is there some "allowable stress" design method that's set forth that is not dependent on yield? If yield is not used as criteria, does it make any difference in terms of failure rates?

Dave Palmer
User Rank
Platinum
Re: Migrating stress cracks versus quick breaks
Dave Palmer   3/23/2012 7:30:08 PM
NO RATINGS
@Chuck: Other engineers should feel free to weigh in on this, but in my experience, it's most common to design to the yield strength, with an appropriate factor of safety. Doing this should protect you against overload failures, provided that (as I pointed out in the article) the loads are what you think they are, and the yield strength is what you think it is.

Mydesign
User Rank
Platinum
Re: Migrating stress cracks versus quick breaks
Mydesign   3/26/2012 6:05:08 AM
NO RATINGS
1 saves
Dave, I think the weight is eventually distributed across the area, and then it can bear more weight than concentrate to particular points. I think in most of the industrial wing, the stress tests are doing for a mass areas rather than stress test in cubic/cm sqd.

Dave Palmer
User Rank
Platinum
Re: Migrating stress cracks versus quick breaks
Dave Palmer   3/26/2012 7:07:21 AM
NO RATINGS
@Mydesign: You're right that loads redistribute to a certain extent as a result of localized yielding, so that a linear FEA which predicts a stress greater than the yield strength in a small region doesn't necessarily indicate failure of the component. This is why designing to "get the red out" of a FEA model, without any insight into the physical situation, can result in overdesign. On the other hand, stresses below the yield strength can lead to fatigue failure if they are repeatedly applied. To get a handle on fatigue, it's important to know how the loads on a part vary over time. This is what I will discuss in the next installment.

bentarrow
User Rank
Iron
Re: Migrating stress cracks versus quick breaks
bentarrow   3/26/2012 11:26:03 AM
NO RATINGS
Dave,

       The subject of "getting the red out" is my current challenge as my design department is just now using FEA. I have had other FEA users at other company locations run FEA on parts in the past & early-on found this issue on linear static analysis of steel forgings. The loading is static and the cross sections are "L shaped" so that there is a bending stress at the inside transion from vertical to horizontal. I've found no amount of thickening the cross section ever completely eliminates the red (below yield). I have seen a report from a P.E. on a similar part where the P.E. concluded that "slight yielding in this area relieves the high stress concentration and then distributes the load more evenly accross the cross section of the part" - or words to that effect.

      That's all well & good but my issue is how to justify the "remaining red" in a report that will be reviewed by other engineers who are not M.E.'s (Petroleum Engineers) - and who are the customer in this case. Any brief suggestions and or recommended literature on this subject would be most welcome.

Thanks,

Leslie

Dave Palmer
User Rank
Platinum
Re: Migrating stress cracks versus quick breaks
Dave Palmer   3/26/2012 12:48:01 PM
NO RATINGS
@bentarrow: I assume you're using a linear FEA package.  Nonlinear FEA would give you a much more accurate picture of localized yielding and load redistribution.  Otherwise, you may just want to point out to your customers that the high stresses at the transition are a result of the assumptions of the FEA model.  This may or may not be a satisfying answer to them, but it's true.

If you can do actual physical testing, this might also help to convince them.  You could look into using a product like Stresscoat to measure the actual tensile strains, and compare this to the results of your FEA model.  If the actual part is too big to test in the lab, you might be able to use a scale model; FEA can help you understand how to appropriately scale the loads so that you get the correct stresses. 

Charles Murray
User Rank
Blogger
Re: Migrating stress cracks versus quick breaks
Charles Murray   3/26/2012 8:05:52 PM
NO RATINGS
Thanks, Dave. I brought the topic of yield strength because I seem to remember something from my distant past called, "working stress" design. I believe working stress was not based on yield strength, but I'm really not sure.

Dave Palmer
User Rank
Platinum
Re: Migrating stress cracks versus quick breaks
Dave Palmer   3/27/2012 10:01:32 AM
NO RATINGS
@Chuck: Usually, in mechanical engineering, the term "working stress" simply means the stress which a component experiences under working loads.  Typically, engineers and designers try to keep the working stress below the yield strength, divided by an appropriate factor of safety. (The yield strength divided by the factor of safety is sometimes called the "allowable stress" or the "design stress").

williamlweaver
User Rank
Platinum
Re: Migrating stress cracks versus quick breaks
williamlweaver   3/29/2012 7:41:08 PM
NO RATINGS
Hey @Dave Palmer, thanks for an awesome post! It's been a while since I've left my industry position, but all of the terms came flooding back. My development team was tasked with creating measurement techniques to complement / verify the FEA. We developed Temperature-sensitive Paint to measure and track propagating fatigue cracks while the part was under test. We developed Pressure-sensitive paint to measure aerodynamics and surface stress distributions. One of the most interesting projects was developing Strain-sensitive Paint for Ford Visteon to visualize whole-body strain-distribution on truck axles (now commercially known as Strain-Sensitive Skin, S3). All of that development was done in the late 1990's. I'm not sure how popular the techniques are now...

Shelly
User Rank
Iron
Vibration big cause of fatigue/crack propagation
Shelly   3/26/2012 10:21:54 AM
NO RATINGS
As mentioned earlier, repeated stresses/cycles on an assembly are a major contributor to fatigue and crack propagation.  The biggest contributor to repeated cycles is vibration.  Sometimes it's difficult to observe, but even high frequency vibration (though very small displacements) can be a fatigue factor due to their high cycle rate.

Vibration can be an issue when attaching a component to a moving machine (frequency depends on the machine dynamics), when designed to handle siesmic vibrations near fault lines (relatively low frequency <10Hz), or just designing to handle transportation to the end user (between 2-500Hz).  The frequency and amplitudes vary, but the main goal is to design components with resonant frequencies well above what the sample will see while in use or transport, and when designing machinery, to avoid stacking resonant frequencies so the components aren't exciting each other's resonant frequencies while in use.

ChasChas
User Rank
Platinum
Things break.
ChasChas   3/26/2012 10:31:31 AM
NO RATINGS
 

Great primer on overload.

My experience has been that operators have the unique ability to find every unintented use of a piece of machinery - causing real eningeering challanges when it comes time to find out what REALLY went wrong.

TJ McDermott
User Rank
Blogger
Re: Things break.
TJ McDermott   3/26/2012 10:49:20 AM
NO RATINGS
It's interesting to watch what happens when a part is redesigned, "beefed up" because it's been breaking in the field.  If the redesign works correctly, the part is no longer the "weakest link", and something else now is.

The usual progression is a series of parts end up being redesigned, one at a time, as each becomes the weakest link in turn.

ChasChas
User Rank
Platinum
Re: Things break.
ChasChas   3/26/2012 11:10:13 AM
NO RATINGS
 

Yes, very intersting TJ - read a classic engineering poem:

http://www.legallanguage.com/resources/poems/onehossshay/

Dave Palmer
User Rank
Platinum
Re: Things break.
Dave Palmer   3/26/2012 12:24:49 PM
NO RATINGS
@TJ McDermott: The all-important question is, "Where is the load coming from?" As you point out, responding to failures by simply beefing up whichever part happens to break often just results in other parts breaking.  At the end of the day, it results in assemblies which are extremely robust, but which are also unnecessarily heavy and expensive.

There's no substitute for a solid engineering analysis of the mechanical system as a whole.  If you understand where the load is coming from, you can address the source of the problem, rather than constantly beefing up parts to compensate.

As I said before, the part which breaks is often an innocent bystander.  Don't blame the part for the inadequacies of the design!

William K.
User Rank
Platinum
Understanding overload failures.
William K.   3/30/2012 9:50:56 PM
NO RATINGS
Dave Palmer certainly got it right in the comments about nonlinear stress analysis. And I would point out that vibration is often an unanticipated mechanism for the excess stress that starts those cracks. In addition, the vibration often leads to the fatigue failure that starts the process. Of course, the amplitude of the vibration is much greater in cases where there is resonance. So now there is a whole list of things to beware of.



Partner Zone
Latest Analysis
Advertised as the "Most Powerful Tablet Under $100," the Kindle Fire HD 6 was too tempting for the team at iFixit to pass up. Join us to find out if inexpensive means cheap, irreparable, or just down right economical. It's teardown time!
The first photos made with a 3D-printed telescope are here and they're not as fuzzy as you might expect. A team from the University of Sheffield beat NASA to the goal. The photos of the Moon were made with a reflecting telescope that cost the research team 100 to make (about $161 US).
At Medical Design & Manufacturing Midwest, Joe Wascow told Design News how Optimal Design prototyped a machine that captures the wing-beat of a duck.
The increased adoption of wireless technology for mission-critical applications has revved up the global market for dynamic electronic general purpose (GP) test equipment. As the link between cloud networks and devices -- smartphones, tablets, and notebooks -- results in more complex devices under test, the demand for radio frequency test equipment is starting to intensify.
Much of the research on lithium-ion batteries is focused on how to make the batteries charge more quickly and last longer than they currently do, work that would significantly improve the experience of mobile device users, as well EV and hybrid car drivers. Researchers in Singapore have come up with what seems like the best solution so far -- a battery that can recharge itself in mere minutes and has a potential lifespan of 20 years.
More:Blogs|News
Design News Webinar Series
10/7/2014 8:00 a.m. California / 11:00 a.m. New York
9/25/2014 11:00 a.m. California / 2:00 p.m. New York
9/10/2014 11:00 a.m. California / 2:00 p.m. New York
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Oct 20 - 24, How to Design & Build an Embedded Web Server: An Embedded TCP/IP Tutorial
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: 10/28-10/30 11:00 AM
Sponsored by Stratasys
Next Class: 10/28-10/30 2:00 PM
Sponsored by Gates Corporation
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service