HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
<<  <  Page 2/2
Beth Stackpole
User Rank
Blogger
Re: Design Requirements
Beth Stackpole   3/13/2012 6:53:13 AM
NO RATINGS
Jon, I don't think I could have said it better (in fact, I know I couldn't). You really just described the biggest hurdle to model-based design. Because it's an entirely new way of thinking and because it requires a completely different mentality of cross-functional collaboration, there will ultimately be push-back from engineers who don't thoroughly understand the benefits and are reticent to make any kind of change.

To embrace this on a grand scale throughout an engineering organization will require a robust change management effort and as you mention, a champion. Bringing in model-based design tools on a piecemeal basis won't be enough to foster any kind of sweeping process change.

Jon Titus
User Rank
Blogger
A Good Place to Start
Jon Titus   3/13/2012 12:49:27 PM
NO RATINGS
Thanks, Beth.  Here's a book I recommend highly, "Driving Technical Change; Why People on Your Team Don't Act on Good Ideas, and How to Convince Them They Should," by Terrency Ryan, published by The Pragmatic Bookshelf.  The author describes the types of people we typically find on a team, from the uninformed and the herd to the cynics and irrationals, and he explains how to work with them and get them on-board with new tools and techniques. (OK, you can't convince the irrational people.) Although the book used programmers for its examples, the information applies equally well to engineers who should adopt model-basded design. At 128 pages, the book is easy to read in one evening.

TonyLennon
User Rank
Iron
Re: A Good Place to Start
TonyLennon   3/13/2012 4:13:07 PM
NO RATINGS
John and Beth are correct about the challenge of embracing Model-Based Design for developing embedded systems. My own experience is that companies gradually adopt, usually starting with control system engineers. The progression is usually multiyear, beginning with desktop simulation, moving to real-time testing and validation, and ending with code generation for production systems.  This approach provides increasing value at each stage, can be woven into existing design practices, and avoids the unwanted shock of a complete change to a development process. Industries are in different stages of Model-Based Design adoption. The Aerospace and Automotive industries are leaders, primarily because their software systems are very complex.  In 2010,  Design News discussed, http://www.designnews.com/document.asp?doc_id=229640, how the Automotive industry is adopting Model-Based Design. Within the industrial markets, automation suppliers developing motor controls and power backups, and solar and wind energy companies developing renewal energy sources are the furthest along the path. As my colleague Ken Karnofsky said in the article, "Software complexity is the big driver." But we are seeing more interest from the traditional machine builders. Recently an engineer with whom I was meeting pointed out that it is the software that running in machines that is becoming more complex, not only the hardware.

Beth Stackpole
User Rank
Blogger
Re: A Good Place to Start
Beth Stackpole   3/14/2012 8:03:51 AM
NO RATINGS
Thanks for the perspective, Tony, and a great description for how the adoption tends to unfold within organizations. Jon: Thanks for the recommendation on a book for change management. Whether it's about leading a culture of model-based design or some other type of major process change, I imagine there are some good takeaways for overcoming resistance.

 

markbreaker
User Rank
Iron
Re: Model Based Design
markbreaker   11/5/2012 6:01:53 AM
NO RATINGS
Well such a nice post i like it also you right "tomhaden"

 

Baytech Web Design

<<  <  Page 2/2


Partner Zone
Latest Analysis
Do you long for the days of retro video gaming? Here's how you can turn an old PC into an old-school arcade cabinet with only $100 and a bit of woodwork.
A Vienna, Austria-based startup called Heliofloat has designed a platform of solar panels that can be deployed in lakes or oceans to generate solar-based electricity.
Electrical engineers from the University of Washington and Delft University of Technology have developed a new type of sensor-based platform that harvests energy from radio waves for electricity.
A simple new chemical method for repairing and recycling notoriously difficult carbon fiber composites has been developed by the Fraunhofer Institute for Applied Polymer Research. An entire component can be completely recycled, including reclaiming its expensive carbon fibers for reuse.
In today’s connected world we are seeing the beginning of connected homes, smart grids, self-driving automobiles, drones, and many other amazing devices. Out of all the soon-to-be connected devices, which device poses the greatest dangerous to its users and society?
More:Blogs|News
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
May 2 - 6, Embedded System Design Techniques™ - Rapid Prototyping Embedded Systems using Micro Python
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7 | 8 | 9


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Technology Marketplace

Copyright © 2016 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service