HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
<<  <  Page 2/3  >  >>
BrotherJohn
User Rank
Iron
Re: Torque?
BrotherJohn   2/21/2012 10:17:24 AM
NO RATINGS
 Another approach to developing clamp load is using angle control. After taking up the slack in the joint, the bolt is tightened to a predetermined angle that corresponds to a stretch that develops the appropriate clamp load  There will be a direct correlation between bolt stretch and clamp load until the bolt yields. This is not the case with the torque-tension relationship.




fredsay
User Rank
Gold
Re: Torque?
fredsay   2/21/2012 9:51:32 AM
NO RATINGS
Ford has gone to Torque-To-Yield (TTY) fasteners for critical parts. a Typical TTY might specify 40 lb-ft, then loosen 1/2 turn, torque to 80 lb-ft, then tighten 90 degrees.

On the plus side, TTY cylider head bolts can be installed and forgotten where older style bolts may need to be retorqued after so many hours of operation. On the minus side, TTY bolts should never be reused since the first use has stretched them.

Is there a specific manyufacturing process TTY bolts must first go through, or is just figuring out the proper torque procedure?

TJ McDermott
User Rank
Blogger
Re: Torque?
TJ McDermott   2/21/2012 9:35:47 AM
NO RATINGS
What happens when another variable like thread-locking compound is added to the torque equation?

Dave Palmer
User Rank
Platinum
Re: Torque?
Dave Palmer   2/20/2012 9:59:18 AM
NO RATINGS
@Tim: "Too much of a good thing" is a common problem.  When I worked in a foundry, there was a melt operator who consistently poured steel as much as 100°F above the recommended temperature.  When I asked him why, he said that it was because other operators who poured at temperatures below the recommended temperature had too many defects.  This was true, but he was getting plenty of defects, too. (In fact, the finishing department had asked me to talk to him, because they were tired of welding up the defective castings he poured).  I asked why he didn't pour at the recommended temperature.  This thought didn't seem to have occurred to him.  I guess nobody ever read him the story of Goldilocks when he was a kid.

Tim
User Rank
Platinum
Re: Torque?
Tim   2/19/2012 1:20:40 PM
NO RATINGS
Once at a previous job, we had issues with threaded holes stirpping out when molds were hung on the aluminum platens of a molding machine.  We could not understand this as we had a regulation on the maximum torque allowed on the screws.  Observation of the process showed that we had one tech on one shift that would tighten until the torque wrench clicked then would tighten and additional half turn.  When asked, he said that he just wanted to make sure that it was tight enough.  We explained the reasoning behind the maximum torque and we really did not see the issue again.  Someitmes you can have too much of a good thing.

Tim
User Rank
Platinum
Re: Thread engagement
Tim   2/19/2012 1:13:47 PM
NO RATINGS
Many companies have internal standards used for thread engagement required for end product use.  These are basicly charts with diameters and loads that dictate the required engagement for a tight / lasting joint. 

Dave Palmer
User Rank
Platinum
Re: Thread engagement
Dave Palmer   2/17/2012 12:59:38 PM
NO RATINGS
@wb8nbs: I would use that rule of thumb with a lot of caution.  For one thing, it doesn't take into account the strength of the material you're threading into.  You need more thread engagement if you are threading into a soft material than you would need if you were threading into a hard material.  It also doesn't take the clamp load into account.  If you need to withstand a higher clamp load, you need to engage more threads.

Based on the approach I described in the column, I calculated that you need a minimum of 7 threads of engagement when threading a Grade 5 3/8"-16 screw with a 6600 pound proof load into an aluminum casting with a 36,500 psi tensile strength.   In this case, three threads would definitely not be enough.

The 1.5D rule of thumb which I mentioned would dictate 9 threads of engagement for a 3/8"-16 screw, regardless of the clamp load or the internal thread material.  This is likely to be conservative in nearly every situation, but it's still just a rule of thumb and your mileage may vary.  The best bet is to go through the calculation.

wb8nbs
User Rank
Silver
Thread engagement
wb8nbs   2/17/2012 11:52:48 AM
NO RATINGS
I recall an old rule of thumb that three threads would bring the fastener strength up to the strength of the screw itself.

Alexander Wolfe
User Rank
Blogger
Re: Torque?
Alexander Wolfe   2/17/2012 10:21:34 AM
NO RATINGS
Thanks for the data dump, Dave. Looking forward to your next column.

Dave Palmer
User Rank
Platinum
Re: Torque?
Dave Palmer   2/17/2012 10:16:52 AM
NO RATINGS
@Alexander: Yes, the situation is absolutely analagous.  There are torque specifications for screws, just like there are for bolts and nuts.  In either case, you are applying a torque in order to create a specific clamp load.  This is the force which keeps the joint from coming apart.

Whether the fastener is a screw or a bolt, a big part of the torque which you apply goes into overcoming underhead friction.  If there is a washer in the assembly, this is friction between the head of the fastener and the washer.  If there is no washer in the assembly, it is the friction between the head of the fastener and the mating surface.

Another big part of the torque goes into overcoming thread friction.  For a bolt, this is the friction between the threads of the bolt and the nut; for a screw, it is the friction between the screw threads and the mating part.

The smallest, but most important, part of the torque goes into stretching the screw or bolt.  This part is responsible for the clamp load.  The more the fastener is stretched, the greater the clamp load.  Of course, if the fastener is stretched too much, it may yield or break. (As I discussed in my article, the mating threads also need to withstand the clamp load -- and if it is spread over too few threads, they may yield or break).

This brief discussion of torque-tension relationships shows why proper thread lubrication is important.  By minimizing thread friction, proper lubrication allows you to produce more clamp load with the same amount of torque.  It also shows why it is often advantageous to use a washer.  Using a washer helps to make the underhead friction predictable and consistent.

Clearly, the torque-tension relationship for a given joint is highly dependent on the materials and finishes used.  For example, if you replace a zinc-plated steel screw with a stainless steel screw, you shouldn't expect to be able to achieve the same clamp load with the same torque, because the friction coefficients will be different.

In order to come up with a torque specification for a specific joint, it's often a good idea to do a torque-tension study.  Generic torque charts can be misleading.  It's important to understand how much variation can be expected in terms of underhead friction and thread friction in your application.  It's also important to understand how much variation in torque you can expect from your torque wrench or driver.  When you have a good understanding of all of the variables involved in the torque-tension relationship, you can specify an installation torque which will provide the clamp load your application needs.

<<  <  Page 2/3  >  >>


Partner Zone
Latest Analysis
Take a look at the top 20 US undergraduate engineering programs. Then tell us -- did your school make the cut?
Producing high-quality end-production metal parts with additive manufacturing for applications like aerospace and medical requires very tightly controlled processes and materials. New standards and guidelines for machines and processes, materials, and printed parts are underway from bodies such as ASTM International.
Engineers at the University of San Diego’s Jacobs School of Engineering have designed biobatteries on commercial tattoo paper, with an anode and cathode screen-printed on and modified to harvest energy from lactate in a person’s sweat.
A Silicon Valley company has made the biggest splash yet in the high-performance end of the electric car market, announcing an EV that zips from 0 to 60 mph in 3.4 seconds and costs $529,000.
The biggest robot swarm to date is made of 1,000 Kilobots, which can follow simple rules to autonomously assemble into predetermined shapes. Hardware and software are open-source.
More:Blogs|News
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Sep 8 - 12, Get Ready for the New Internet: IPv6
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service