HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
<<  <  Page 3/3
Dave Palmer
User Rank
Platinum
Re: Commonplace Chemicals
Dave Palmer   2/3/2012 11:50:24 AM
NO RATINGS
@Alex: When it comes to environmental stress cracking, there is not necessarily any advantage to making the plastic thicker or thinner.  The key variables are stress and chemical exposure.  If by making the plastic thicker, you can reduce the stress below the threshold, then it might be a solution.  But often the threshold stress is so low that this is impractical.  And if the internal stresses in the material are high enough, it doesn't matter what you do with the external stress.

Here is a good introduction to residual stress in plastics.  At some risk of oversimplification, thin-wall sections are more likely to have flow-induced residual stresses, while thick-wall sections are more likely to have thermal-induced residual stresses.  But either way, molded-in stresses can be significant.

Alexander Wolfe
User Rank
Blogger
Commonplace Chemicals
Alexander Wolfe   2/3/2012 11:16:41 AM
NO RATINGS
I never realized the commonplace chemicals like oil and grease were precursors to stress cracking in plastics. Good to know. Also didn't realize there's some built-in prestress. It seems that, in consumer systems, the plastic always ends up cracking at some point. Is that because thin(ner) plastics are always prone to cracking (and on the other side of the design equation, making them thick enough to be more crack resistant doesn't comport with weight and cost requirements. Or are the thicker plastics just as stress-crack prone?)

<<  <  Page 3/3


Partner Zone
Latest Analysis
The problem with a four-, five-, or six-year degree is that they don’t teach engineers the soft skills required to have a successful career. Here are seven skills that every engineering graduate needs to be successful.
A UK-based company called Ilika has developed a miniature solid-state battery to power the IoT.
A new oscilloscope-based test system adds a unique dimension to the process of analyzing the dynamic performance of three-phase motors and drives.
Design teams are operating in a business environment that increasingly requires them to collaborate and share data across extended teams, multiple organizations, and widespread locations. Autodesk’s customers are looking for a solution that eliminates project bottlenecks, such as the time-consuming and error-ridden process of shuttling design reviews and revisions back and forth among team members.
A Finland-based company has introduced what it claims is the first smart door lock that can be powered from energy harvested from a mobile device.
More:Blogs|News
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
May 2 - 6, Embedded System Design Techniques™ - Rapid Prototyping Embedded Systems using Micro Python
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7 | 8 | 9


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Technology Marketplace

Copyright © 2016 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service