HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
REGISTER   |   LOGIN   |   HELP
Beth Stackpole
User Rank
Blogger
Intelligent everything
Beth Stackpole   1/26/2012 7:03:59 AM
NO RATINGS
Very cool piece of development and one that would certainly benefit broader use of composites. The idea that a coating could deliver intelligent inspection capabilities is in some ways out there, but then again, in keeping with steady pace of technological advances. In many ways, the development strategy makes perfect sense. Do you have a sense of how difficult or how unique it is to develop a single coating with different signatures that can appear  different depending on different energy levels of impact?

Ann R. Thryft
User Rank
Blogger
Re: Intelligent everything
Ann R. Thryft   1/26/2012 12:20:45 PM
NO RATINGS

Beth, I understand that designing these different coatings is equally simple, whether one coating detects one energy level or multiple energy levels. Creating the actual coating may be a different story, but that wasn't entirely clear. In any case, GKN said it plans to sell the coatings as an integral part of its composite aircraft structural components, not as a separate product line.


williamlweaver
User Rank
Platinum
Onboard Coatings
williamlweaver   1/26/2012 9:14:08 AM
NO RATINGS
Thanks for the article Ann! It is great to see this technology being commercialized and incorporated into engineering materials. I was involved in the development of diagnostic coatings which, when excited and viewed under specific wavelengths, provided surface information of temperature, pressure, strain, and cracks. The coatings were applied to the surface of the completed unit for testing. I'm delighted to learn of continued development of both surface and internal coatings during component manufacturing.

One of our biggest surprises came from using composite repair material when applied to traditional metals (aircraft aluminium). Our coatings were used to inspect the performance of a "composite Band-Aid" that could be used to field dress a fatigue crack until the panel could be replaced. The difficulty was that the mechanical performance of the composite material was so superior to the original alloy that the repair site was often a greater point of additional fatigue cracking in the original metal because of the sharp differences between the materials. I imagine things will be better and far superior when all of the components are made out of advanced composites in the first place. 


Alexander Wolfe
User Rank
Blogger
Re: Onboard Coatings
Alexander Wolfe   1/26/2012 3:40:47 PM
NO RATINGS
This is indeed a significant development because it holds the promise that there will be a cost-effective, easily implementable, repeatable, industry wide technique for inspect composites. This is going to be critical important not only to prevent in-flight failures, but also to gather life (MTBF) data on how different composite structures actually perform on commercial aircraft, particularly on primary structures like wings. (A primary structure in aerospace terms refers to a part where, if it fails, the plane will no longer be flyable. So for example you can survive a rip in the fuselage, but not the loss of a wing.)

Ann R. Thryft
User Rank
Blogger
Re: Onboard Coatings
Ann R. Thryft   1/26/2012 4:34:14 PM
NO RATINGS

Alex brings up two important points. First, since this proposed coating or class of coatings will be available only as an inherent part of a composite airframe structure sold by one company, it won't be available for other composite airframe structures sold by other manufacturers. I've already heard of one other project targeting a similar purpose but using an entirely different chemical and behavioral model. That means competition among different types that work in different ways. So actually there may not be much in the way of industry-wide techniques. 

Second, it does provide a great opportunity to gather MBTF data. Even if it's coming from airstructures using entirely different coating types, the data should be comparable about how composites break.


TJ McDermott
User Rank
Blogger
Re: Onboard Coatings
TJ McDermott   1/26/2012 5:01:04 PM
NO RATINGS
I've seen simple things like White-Out used during materials testing to detect cracks and delaminations.

The damage-detecting coatings themselves I believe have been around for a while.  The trick to which this article alludes is the non-visible wavelengths that would be used.  THAT is a good idea.  Damage-detecting coatings that the flying public can see are not confidence building.

The article carefully did not state which spectrums would be used, whether infrared or ultraviolet.  I might consider watching the wing with my IR scanner in the future....

Ann R. Thryft
User Rank
Blogger
Re: Onboard Coatings
Ann R. Thryft   1/27/2012 11:34:31 AM
NO RATINGS

TJ, that's funny, using whiteout to detect cracks and delams. I bet it worked great. But I doubt if that would work on CFR composites or even glass-reinforced composites. Damage on these, especially CFR, is invisible to the naked eye and techniques for detecting it different from those used for detecting same in traditional materials. You are right, I carefully did not reveal the wavelength since I honored the company's request in order to get this much published.

You say damage-detecting coatings have been around for awhile, but not using non-visible wavelengths. Do you mean that damage-detecting coatings *for these composites* have been around for awhile? Please inform us if you know!


Alexander Wolfe
User Rank
Blogger
Re: Onboard Coatings
Alexander Wolfe   1/26/2012 6:10:25 PM
NO RATINGS
Thanks for the info, Ann. So that means that the ability to utilize this detection technique will be proprietary, but I guess it also indicates that the state of the technology is at the point where other composite makers should be able to do this too, at least eventually. (That's unless there's only a very narrow class of coatings which are amenable to the detection process, and they're patented or trade secret.) Anyway, I guess the upshot is that this is not going to be anywhere near as industry-widee as I assume. At the same time, it opens up the idea that, with technology advancing, maybe the FAA can move towards some specificity in its composites directives.

Ann R. Thryft
User Rank
Blogger
Re: Onboard Coatings
Ann R. Thryft   1/27/2012 11:35:24 AM
NO RATINGS

Alex, thanks for thinking industry-wide again. I agree, the technology is certainly in the early stages and it makes me wonder how many other coatings manufacturers or composite airstructure makers are conducting similar research under the radar, possibly even in partnership with each other. It might make more sense from an industry standpoint to develop and commercialize something that can be applied by all airstructure manufacturers and regulated by the FAA. But that also assumes that it can be applied in an aftermarket scenario and still work properly. I get the impression that GKN's coating needs to be "baked" in, either literally or figuratively, in order to do its job. But that could also be because they are not a coatings manufacturer.


Charles Murray
User Rank
Blogger
Re: Onboard Coatings
Charles Murray   1/27/2012 5:51:34 PM
NO RATINGS
Ann, do we know much about today's composite crack investigation techniques? Is this better or just faster and easier?

Ann R. Thryft
User Rank
Blogger
Re: Onboard Coatings
Ann R. Thryft   1/30/2012 11:54:12 AM
NO RATINGS

Chuck, someone knows a lot about the subject, and I wish I did. I've already spent quite a lot of time surfing and snooping around on the Web, but it's quite difficult to find out anything aside from what's in that GAO report, and Boeing is less than forthcoming. I assume this is for security and/or market competition reasons. I'm checking the MRO schools' websites for course descriptions, e.g., but not much luck so far. The thing to remember, in general, is that repair techniques have existed as long as composites in aircraft have existed, but for some time it was all military. Then they entered the commercial aircraft sector, but not, I repeat not, in primary structures. Their use in primary structures has changed everything.


Dave Palmer
User Rank
Platinum
A no-brainer?
Dave Palmer   1/26/2012 10:58:48 AM
NO RATINGS
Coatings such as Stresscoat have been used in experimental stress analysis for decades.  It seems like a no-brainer to use something like this for structural health monitoring.  Of course, it's easy to say that something is a no-brainer after someone else has already come up with it.  I'm just surprised that nobody came up with something like this sooner.

Ann R. Thryft
User Rank
Blogger
Re: A no-brainer?
Ann R. Thryft   1/26/2012 12:22:07 PM
NO RATINGS

Thanks, William and Dave, for sharing your experience in this area. It surprises me that using composites as a repair material for aluminum didn't strike anyone as not a good idea, since their properties are so different. To my limited knowledge so far, repair materials for composites are supposed to pretty closely match the material they are replacing.

The whole subject of using coatings to monitor structural health does seem obvious, doesn't it? I notice that Stresscoat does not appear to address composites. The big deal about them is the fact that damage can be invisible, hence the attempts to make it visible under other wavelengths. And yes, you would think that research such as GKN's would have already occurred, and perhaps it has. Theirs was not easy to find, so it's possible there's other such research going on quietly.


Beth Stackpole
User Rank
Blogger
Re: A no-brainer?
Beth Stackpole   1/26/2012 12:54:31 PM
NO RATINGS
Dave, You just articulated the point that I was trying to make so much better than I did. It does seem like a no-brainer, especially if the technology has been around for a while. I'm wondering what hurdles there were preventing this from being put to use in any significant form prior to now. Or maybe it's that there wasn't a formal market for something like this given that composite materials are just now becoming so dominant in aerospace design.

Ann R. Thryft
User Rank
Blogger
Re: A no-brainer?
Ann R. Thryft   1/26/2012 3:26:17 PM
NO RATINGS

I don't think the technology has been around for awhile, at least not for composites. The idea may have been. But there's a big difference between realizing one can use coatings to assist in detecting damage--the no-brainer aspect--on one hand, and on the other figuring out exactly what coatings, how they should work, how to apply them without causing other problems, etc. Since GKN is a supplier of composite airstructures and since their scientist describes redesigning a coating at the microsphere level, I would suspect that what's taken some time is the process of figuring  out details of how to make and implement such a coating. Even at this point before the 18 months + another 18-24 months before commercialization, they gave a quite coherent description of the basic idea. Yet it will likely take 3+ years before a flight test is likely. So the R&D involved is not trivial.


Charles Murray
User Rank
Blogger
Re: A no-brainer?
Charles Murray   1/26/2012 9:59:43 PM
NO RATINGS
True, Dave. Like many great ideas, it seems obvious after the fact.



Partner Zone
Latest Analysis
These are the toys that inspired budding engineers to try out sublime designs, create miniature structures, and experiment with bizarre contraptions using sets that could be torn down and reconstructed over and over.
Connected sensor-enabled applications will improve the consumer experience -- and generate new revenue streams.
PowerStream is deploying the microgrid at its headquarters to demonstrate how people can generate and distribute their own energy and make their homes and businesses more sustainable through renewables.
Printrbot unveils its all-metal Printrbot Simple, bringing durability to low-cost 3D printers.
Today's robots should be respected, and humans should be wary of their growing skills and sophistication. Quite simply, robots are better than us in a lot of ways. Here are 10 of them.
More:Blogs|News
Design News Webinar Series
3/27/2014 11:00 a.m. California / 2:00 p.m. New York / 7:00 p.m. London
2/27/2014 11:00 a.m. California / 2:00 p.m. New York / 7:00 p.m. London
12/18/2013 Available On Demand
11/20/2013 Available On Demand
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 21 - 25, Creating & Testing Your First RTOS Application Using MQX
SEMESTERS: 1  |  2  |  3  |  4  |  5


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: April 29 - Day 1
Sponsored by maxon precision motors
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Datasheets.com Parts Search

185 million searchable parts
(please enter a part number or hit search to begin)
Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service