HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Comments
View Comments: Oldest First|Newest First|Threaded View
<<  <  Page 2/2
Dave Palmer
User Rank
Platinum
Re: Part of a core foundation
Dave Palmer   1/23/2012 11:26:58 AM
@evofxdwg: Yes, it's definitely possible to prevent corrosion using impressed DC current. This is done mainly for large structures; it tends not to be practical in smaller applications. Of course, this works the other way around, too: stray currents in the water can accelerate corrosion of outboard engines, for instance. A good source of information on designing cathodic protection systems for structures is U.S. Army Corps of Engineers Technical Manual 5-811-7, which can be found online.

evofxdwg
User Rank
Iron
Re: Part of a core foundation
evofxdwg   1/23/2012 11:41:22 AM
NO RATINGS
Thanks for that reference Dave Palmer. I will definitely look into it.  I became interested in the subject several years ago when i installed a Ground Source Heat Pump in my home. I was interested in how to protect metallic pipe in the ground, or immersed in a well. Well water is mildly acidic in my area.  But im assuming pipe in the ground in contact with various types of sand/clay might be a different, more complex problem.  Metallic pipe, or an immersed metallic coil heat exchanger would be much better for heat transfer than the recommended formulation of poly pipe recommended by the Ground Source Heat Pump industry. (After looking at the problem a bit, i decided only titanium might be viable.  I did not install metallic pipe because i could not obtain a cheap source of surplus titanium tubing or coils, nor reliably solve the interconnection problem due to corrsion of clamps)

PS: WOW I just looked at that document - way more info than i found before. I will digest it at home thoroughly!

William K.
User Rank
Platinum
Understanding galvanic corrosion.
William K.   1/23/2012 4:05:27 PM
NO RATINGS
This is a simple and yet very informative write up. THANKS! It would have been useful for some of the engineers at Chrysler Corp to have been a bit more familiar with this a few years ago. The corrosive failure mode of extruded aluminum alloy bumpers is very impressive, in addition to being quite discouraging. Of course, sea water is not nearly as salty as the saturated brine solution found on our Southeast Michigan roadways every winter. So of course, just because cars might survive a dunk in the ocean idoes not mean that they would last very long here.

Probably it would be a good idea for all schools offering engineering courses to add a course in corrosion, and to put it at a senior level.  

Charles Murray
User Rank
Blogger
Re: Part of a core foundation
Charles Murray   1/23/2012 7:39:55 PM
NO RATINGS
Good point, Beth. When I studied engineering, we took two semesters of chemistry and one of material science (or metallurgy, which was more typical back then), but the chemistry of corrosion was never discussed, as I recall. Very nice article.

Alexander Wolfe
User Rank
Blogger
Re: Part of a core foundation
Alexander Wolfe   1/23/2012 10:26:09 PM
In EE, we had two semesters of chemistry in freshman year. (Never got a lot of use out of it or learned much.) We had no metallurgy at all, no materials science. I guess that was in the ME curriculum, but from reading Dave's excellent piece here, I can see that some exposure would've been beneficial. I guess everything eventually returns to its base form if exposed to the elements long enough.

<<  <  Page 2/2


Partner Zone
Latest Analysis
Samsung's Galaxy line of smartphones used to fare quite well in the repairability department, but last year's flagship S5 model took a tumble, scoring a meh-inducing 5/10. Will the newly redesigned S6 lead us back into star-studded territory, or will we sink further into the depths of a repairability black hole?
Fifteen European research centers have launched EuroCPS to help European companies develop innovative products for the Internet of Things.
Get your Allman Brothers albums ready. The iconic Volkswagen Microbus may be poised for a comeback, and this time it could be electric.
In 2003, the world contained just over 500 million Internet-connected devices. By 2010, this figure had risen to 12.5 billion connected objects, almost six devices per individual with access to the Internet. Now, as we move into 2015, the number of connected 'things' is expected to reach 25 billion, ultimately edging toward 50 billion by the end of the decade.
NASA engineer Brian Trease studied abroad in Japan as a high school student and used to fold fast-food wrappers into cranes using origami techniques he learned in library books. Inspired by this, he began to imagine that origami could be applied to building spacecraft components, particularly solar panels that could one day send solar power from space to be used on earth.
More:Blogs|News
Design News Webinar Series
3/31/2015 11:00 a.m. California / 2:00 p.m. New York
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
5/7/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 20 - 24, Taking the Internet of Things to the Cloud
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service