HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Comments
View Comments: Newest First|Oldest First|Threaded View
<<  <  Page 2/3  >  >>
Ann R. Thryft
User Rank
Blogger
Re: Impressive material
Ann R. Thryft   1/5/2012 12:57:24 PM
NO RATINGS

Sorry I didn't get the joke, Rob, but I still think it's a valid question. 

To my mind, the big question about so many of these new alternative materials is how sustainably they can be manufactured and whether they can be recycled in one fashion or another: whether that's biodegrading or being turned into fuel via a waste-to-energy process (and how bad or good those may be for the environment). Like you have often said, it's the whole lifecycle that must be considered.


Rob Spiegel
User Rank
Blogger
Re: Impressive material
Rob Spiegel   1/5/2012 12:40:52 PM
NO RATINGS
Well, the boric acid was a joke -- and top of mind as I'm fighting a sugar ant infestation. 

But to the point, the more I read your articles as well as articles about energy savings attempts in automotive and aerospace, over and over, it's the materials that matter.  Plus, many of the newly develop materials are environmentally friendly in their own right.

Ann R. Thryft
User Rank
Blogger
Re: Impressive material
Ann R. Thryft   1/5/2012 12:32:40 PM
NO RATINGS

Rob, that's an interesting chemistry question. Since this material only mimics an exoskeleton and is actually made of shrimp shells and silk, boric acid won't have the same effect on it. But it might also damage it.

And I agree with you, I think that one big method for reducing dependence on fossil fuels may be better materials.


Ann R. Thryft
User Rank
Blogger
Re: Biomimickry an important design principle
Ann R. Thryft   1/5/2012 12:26:47 PM
NO RATINGS

Beth, that's the first thing I thought when I saw the comparison with aluminum--whether this material might have apps in aircraft, either wings or other components, instead of or in addition to composites. I'm wondering the same thing about this material as Chuck mentioned, just exactly how it compares with aluminum in strength and stiffness, as well as shear.


Rob Spiegel
User Rank
Blogger
Re: Impressive material
Rob Spiegel   1/5/2012 9:24:12 AM
NO RATINGS
Impressive material. Just have to keep it away from boric acid (that's the insecticide that kills ants by harming the exoskeleton). 

I could imagine an unlimited number of uses. From your articles, I'm beginning to think that one strategy for energy use reduction and sustainability is going to be advances in materials.

Alexander Wolfe
User Rank
Blogger
Re: Sci-fi material
Alexander Wolfe   1/5/2012 9:16:58 AM
NO RATINGS
This story also puts me in mind of the upcoming Medical Design & Manufacturing conference in Feb. (Link is here.) Not intending this to be a promo for the show, but it's about medical devices and of course miniaturization is the big trend in that area, and anything enabling strong but small packaging will/could be a significant driver of new product development.

Charles Murray
User Rank
Blogger
Sci-fi material
Charles Murray   1/4/2012 10:58:12 PM
NO RATINGS
This looks like something out of a sci-fi movie. I wonder how it stacks up against aluminum in terms of shear and bending capacity.

Dave Palmer
User Rank
Platinum
Re: Biomimickry an important design principle
Dave Palmer   1/4/2012 5:17:18 PM
NO RATINGS
Ann, thanks for another interesting article.  Beth, you are absolutely right about biomimickry ("biomimetics" is the fancy word for this).

As Ann's article points out, the key to getting the strength and toughness of insect cuticle was reproducing the lamellar structure, with hard (chitosan) and soft (fibroin) layers.  Many biological materials are able to achieve amazing properties through the proper arrangement of hard and soft segments.  Perhaps even more amazing, these materials are self-assembled at the molecular level!

There is a lot of fascinating work going on in materials engineering departments related to the structure and properties of biological materials.  Dr. Marc Meyers and his group at UC-San Diego have done some very interesting work on clam shells, toucan beaks, and armadillo armor, among other materials.

There is also a lot of fasinating work attempting to create new materials based on principles found in nature.  Dr. Robert Ritchie of UC-Berkley gave an interesting presentation at last year's Materials Science and Technology conference in Columbus about work he has been doing using ice templates to create polymer-ceramic composites with structures based on mother-of-pearl.  These materials are incredibly tough, tougher than many aluminum alloys.

Molecular self-assembly of strong, tough, lightweight, nanostructured materials is something which we, as materials engineers, would love to be able to do.  Our bodies, and the natural world around us, do it every day, yet we are only just beginning to learn how it's done.

Beth Stackpole
User Rank
Blogger
Re: Biomimickry an important design principle
Beth Stackpole   1/4/2012 4:49:05 PM
NO RATINGS
I would think lots of applications in aerospace because afterall aircraft wings are in really no more than a biomimickry interpretation of bird's wings. Maybe this material, once it evolves and is commercialized, can give composites a run for the money!

Ann R. Thryft
User Rank
Blogger
Re: Biomimickry an important design principle
Ann R. Thryft   1/4/2012 1:11:44 PM
NO RATINGS

Lightweight airplane wings are one of the possibilities I had in mind, too when I first saw this, and not only because the researchers started with the proposition of recreating an insect wing's material. It was the comparison with aluminum that caught my eye, since that comparison is so often made by composite manufacturers, especially in aerospace apps.


<<  <  Page 2/3  >  >>


Partner Zone
Latest Analysis
Adam Berger hacked a computer keyboard into a mini key-tar to play with his band.
Altair has released an update of its HyperWorks computer-aided engineering simulation suite that includes new features focusing on four key areas of product design: performance optimization, lightweight design, lead-time reduction, and new technologies.
At IMTS last week, Stratasys introduced two new multi-materials PolyJet 3D printers, plus a new UV-resistant material for its FDM production 3D printers. They can be used in making jigs and fixtures, as well as prototypes and small runs of production parts.
In a line of ultra-futuristic projects, DARPA is developing a brain microchip that will help heal the bodies and minds of soldiers. A final product is far off, but preliminary chips are already being tested.
If you're planning to develop a product that uses a microcontroller, you'll want to take note of next week's Design News Continuing Education course, "MCU Software Development A Step-by-Step Guide."
More:Blogs|News
Design News Webinar Series
9/10/2014 11:00 a.m. California / 2:00 p.m. New York
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Sep 22 - 26, MCU Software Development A Step-by-Step Guide (Using a Real Eval Board)
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service