HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
<<  <  Page 2/2
williamlweaver
User Rank
Platinum
Re: Interesting material
williamlweaver   12/22/2011 6:27:03 AM
NO RATINGS
Reading this article and others like it around the net, it looks like the folks at ESPCI ParisTech are not exaggerating when they describe their development as a "new class" of material. While it does appear to be the result of basic research, it was supported in part by the Arkema Group. I anticipate this material and its reaction chemistry will be part of a large patent portfolio. At its face, it reminds me of the fictional "Transparent Aluminum" appearing in Start Trek IV: The Voyage Home. But rather than being a metal with glass-like qualities, the fine folks at the Laboratoire "Matière Molle et Chimie" have developed a thermoset polymer with glass-like qualities. Both would be fantastically revolutionary.

Tim
User Rank
Platinum
Re: Interesting material
Tim   12/21/2011 4:05:16 PM
NO RATINGS
This is an interesting material.  I agree that the processability of the new material should be significantly better than existing thermoset materials.  The article is a little misleading in that it states that the material has glass like properties.  True, the material will melt and flow like glass, but per the atricle, the materiala at room temperature is more like conventional rubber than glass. 

William K.
User Rank
Platinum
New thermoplastic resin has properties...
William K.   12/21/2011 3:10:29 PM
NO RATINGS
I wanted to read the article but I am unwilling to sign up for the association, or even to register. I am not a "plastics professional" and don't want to be treated like one. I was hoping to extend my education a bit, and be able to be better prepared for design decisions in the future. But I am not in the plastics industry.

 

So why not let others read about what sounds like a great advance?

Rob Spiegel
User Rank
Blogger
Re: Interesting material
Rob Spiegel   12/21/2011 12:46:44 PM
NO RATINGS
Pretty interestng, Dave. From what you're saying, I take it that the new materials has wide potential uses. Given that, it doesn't matter if a particular use was targeted in development. 

kurturethane
User Rank
Iron
Re: Interesting material
kurturethane   12/21/2011 9:23:30 AM
NO RATINGS
I would think the recyclability of it would be hampered by the fact that it would still be molded into a composite structure with fiber reinforcement. Just like painted PP/TPO is limited in recyclability, this would be too, but still it could still be molded into something useful. If it's based on currently available thermosetting resins, I would think the moldability would be comparable (i.e. low cost tooling, low pressure molding, long cycle times), so the economics would be comparable. If it functions like a thermoset during the design life cycle of the part, I thing the main benefit would be the "green" aspect of its recyclability at the end of its life cycle.

Dave Palmer
User Rank
Platinum
Re: Interesting material
Dave Palmer   12/20/2011 4:44:02 PM
NO RATINGS
@Rob: I don't think this was developed for a specific application -- this looks like basic research. (Looking at the ESPCI website which Ann links too, it would appear that basic research is their mission).

I can't emphasize enough that this is a major breakthrough in polymer chemistry.  This group has developed an entirely new class of material -- a thermosetting resin with reversible crosslinks.  The number of potential applications is enormous -- basically, any application where polymers are used (and probably some where they currently aren't, too).

Is it a "solution looking for a problem"? Not really; it's a solution to very fundamental problems with thermosetting and thermoplastic resins, which the authors express very clearly and succinctly in their introduction.  Thermosetting resins don't flow when heated, which, among other things, means they can't be injection molded or extruded.  As Ann points out, it also means they can't be recycled.  On the other hand, thermoplastics don't have the dimensional stability, mechanical properties, or chemical resistanceof thermosets.

By making a thermoset which behaves like a thermoplastic at high temperatures, they have essentially solved both sets of problems.  Not only that, but they have also enabled totally new manufacturing methods which couldn't even be imagined before.

It may be a few years before this class of material starts to make its way into applications.  It doesn't seem like cost will be a barrier to adoption, but unfamiliarity will undoubtedly be -- this class of material fundamentally challenges what everybody thinks they know about how polymers behave.  But this is a really incredible development which illustrates the value of basic research, and is certain to have a massive impact.

Rob Spiegel
User Rank
Blogger
Re: Interesting material
Rob Spiegel   12/20/2011 3:56:38 PM

I agree with Beth. This material was probably created with a particular solution in mind. I think it's only in the electronics industry where technology is developed without a specific solution in mind. I wouldn't imagine a "solution looking for a problem" is common in materials.

 


Beth Stackpole
User Rank
Blogger
Re: Interesting material
Beth Stackpole   12/20/2011 1:47:55 PM
NO RATINGS
I agree with Rob that the possibilities for a material of this sort are intriguing. I know this is still in the early development stage, but the project must be driven with an eye to possible applications of this kind of material and what sort of issues it might resolve. Any sense of where it might be used and what industries it might impact?

Rob Spiegel
User Rank
Blogger
Interesting material
Rob Spiegel   12/20/2011 1:23:10 PM
NO RATINGS
Nice article, Ann.

Is this material being used yet? I'm very curious as to its use. Would its use be very specific? Or could it possibly have a wide range of uses? Sounds like it's much more flexible in its potential uses than materials it might replace.

Dave Palmer
User Rank
Platinum
Very interesting development
Dave Palmer   12/20/2011 1:22:41 PM
NO RATINGS
@Ann: I don't think it's correct to call this a thermoplastic resin -- at least, the authors don't seem to call it that in the Science article.  It's crosslinked, which would make it a thermoset according to the conventional definition.  The difference is that, in this material, the crosslinks can rearrange themselves by means of a reversible chemical reaction.  In a typical thermoset, the crosslinks are irreversible (which is why normal thermosets have no melting point and can't be recycled).

I also don't think it's correct to say that it could be recycled by pyrolysis.  Pyrolysis would mean thermally breaking down the polymer, which would probably render it unusable. (You might be thinking about composite recycling, where pyrolysis can be used to recover fibers by removing the polymer matrix).  The authors mention hydrolysis or alcoholysis, which would mean chemically breaking down the crosslinks, while leaving the polymer chains intact.

The method the authors used to recycle the material was simpler -- they just ground up the material and re-molded it.  It looks like the properties were not as good as the virgin material -- but they weren't that bad either, and the fact that they were able to do it at all is impressive.

This is a very interesting development in polymer science.  I hope that everyone interested in this will follow the link to the Science article.

The idea of having crosslinks which can be turned on and off is a concept which is also used in self-healing and shape memory polymers.  It will be interesting to see what uses people come up with for this.

<<  <  Page 2/2


Partner Zone
Latest Analysis
Conventional wisdom holds that MIT, Cal Tech, and Stanford are three of the country’s best undergraduate engineering schools. Unfortunately, when conventional wisdom visits the topic of best engineering schools, it too often leaves out some of the most distinguished programs that don’t happen to offer PhD-level degrees.
Sherlock Ohms highlights stories told by engineers who have used their deductive reasoning and technical prowess to troubleshoot and solve the most perplexing engineering mysteries.
Airbus Defence and Space has 3D printed titanium brackets for communications satellites. The redesigned, one-piece 3D-printed brackets have better thermal resistance than conventionally manufactured parts, can be produced faster, cost 20% less, and save about 1 kg of weight per satellite.
A group of researchers at the Seoul National University have discovered a way to take material from cigarette butts and turn it into a carbon-based material that’s ideal for storing energy and creating a powerful supercapacitor.
Hacking has a long history in the movies, beginning with Tron and War Games and continuing through The Girl with the Dragon Tattoo.
More:Blogs|News
Design News Webinar Series
9/10/2014 11:00 a.m. California / 2:00 p.m. New York
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Sep 22 - 26, MCU Software Development – A Step-by-Step Guide (Using a Real Eval Board)
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service