<<  <  Page 2/2
Ann R. Thryft
User Rank
Re: Fiberglass versus composites
Ann R. Thryft   11/28/2011 12:27:05 PM

To clarify, fiberglass is only one class of glass-fiber reinforced composites. I think the point the article was making was that, specifically for aerospace, non-fiberglass composites, especially carbon fiber based ones, are superior in performance, albeit more expensive. In aircraft, automobiles, and boats, the question is whether a material can be used in a primary or secondary structure. 

Jerry dycus
User Rank
Re: Fiberglass versus composites
Jerry dycus   11/23/2011 1:16:25 PM

  It depends on the part but FG is 10% of the price of CF for a whole 10% weight savings!!  And if it's made from woven CF cloth it's not even as good as FG.

So other than aircraft where CF is worth it some of the time, FG, Kevlar like fibers will rule.

Far more important is design to make the best use of materials. 

In the future materials, especially metals, oil, will be much higher cost because of the huge demand of 3billion 3rd world peoples becoming first world. 

 In such a place we are heading fast being able to make FG from sand and solar thermal means it will stay a low cost material for building many things from transport, homes, etc. And the resin can easily be made from biomass as much of it is presently done in epoxies.

Now add composites don't rust, low cost composites have a bright future.  Especially if we can get Detroit, etc to make unibody cars, trucks from it, cutting weight by 40%.

Dave Palmer
User Rank
Re: Fiberglass versus composites
Dave Palmer   11/23/2011 1:08:47 PM
@Alexander: As Ann points out, fiberglass is a composite.  When you say "composites will displace fiberglass," I assume you mean that other composites will displace fiberglass - presumably, composites with other types of reinforcements, such as carbon fiber.  But as the article points out, carbon fiber has been around for a long time, too.  And glass fiber reinforced composite technology has not stood still, either.  Visit Cytec's website, and you will see that many of the advanced composites they have developed are glass fiber reinforced.

If it were really a case of glass versus carbon, with one inevitably triumphing while the other is relegated to the "slag heap" - isn't a metallurgical metaphor a little out of place here? - then you'd think this would have happened 30 years ago, wouldn't you?

But, for the most part, this is not how things work in the world of materials.  Around three thousand years ago, tools made out of iron and steel began to replace tools made out of bronze - but we still use bronze for all kinds of things.  Similarly, glass and carbon fibers (and other kinds of reinforcements!) will find their appropriate places in different applications.

Some of the biggest advances, as you allude to, have been in composite manufacturing techniques.  For example, labor-intensive hand layup (which is probably what you're thinking of when you say "fiberglass is messy"!) has largely been replaced by the use of prepreg systems.


Ann R. Thryft
User Rank
Re: Fiberglass versus composites
Ann R. Thryft   11/23/2011 11:56:23 AM

Fiberglas is often mentioned as one of the major materials composites are competing against for light weight in aircraft and automobiles, although technically speaking, fiberglass is itself an early composite material. Since the two main composite fiber (versus matrix) materials for use in these applications are glass fiber and carbon fiber, composites based on those have to come down in price to meet cost goals. You're right, Alex, fiberglass will probably remain cheaper for some time to come. The main advantage composites, especially carbon fiber ones, have over fiberglass now is strength and rigidity.

And to Beth's point, that's exciting news. Composites manufacturing in the past has been a lengthy, complicated process.

Alexander Wolfe
User Rank
Fiberglass versus composites
Alexander Wolfe   11/23/2011 7:50:26 AM
I'm wondering if the rise of composites is going to eventually relegate Fiberglass to the slag heap. The latter has seen service for years in cars -- most notably the Chevy Corvette -- and boats. I'm assuming it remains much cheaper than composites. However, working with Fiberglass is messy (and dangerous in its own way, as far as inhalation is concerned). Perhaps at some point as composites become easier to work with, there will be some kind of crossover and composites will displace fiberglass. OTOH, I'm betting fiberglass will remain significantly cheaper for the foreseeable future.

Beth Stackpole
User Rank
New PLM capabilities may help optimize processes
Beth Stackpole   11/23/2011 6:34:36 AM
One development that could have a really positive effect on optimizing the design, manufacture, and maintenance of composite components on aircraft or marine applications is the fact that the major PLM vendors have begun to build out composite capabilities as part of their core platforms. Dassault has been very aggressive on that front, and Siemens PLM Software recently acquired Vistagy, a major player in the niche market of simulation, development, and process tools for optimizing composite design and manufacturability. These tools can help automate some of the traditional manual and time consuming parts of the composite development process and integrate this key aspect as part of a broader multidisciplinary development effort.

<<  <  Page 2/2

Partner Zone
Latest Analysis
Samsung's Galaxy line of smartphones used to fare quite well in the repairability department, but last year's flagship S5 model took a tumble, scoring a meh-inducing 5/10. Will the newly redesigned S6 lead us back into star-studded territory, or will we sink further into the depths of a repairability black hole?
Fifteen European research centers have launched EuroCPS to help European companies develop innovative products for the Internet of Things.
Get your Allman Brothers albums ready. The iconic Volkswagen Microbus may be poised for a comeback, and this time it could be electric.
In 2003, the world contained just over 500 million Internet-connected devices. By 2010, this figure had risen to 12.5 billion connected objects, almost six devices per individual with access to the Internet. Now, as we move into 2015, the number of connected 'things' is expected to reach 25 billion, ultimately edging toward 50 billion by the end of the decade.
NASA engineer Brian Trease studied abroad in Japan as a high school student and used to fold fast-food wrappers into cranes using origami techniques he learned in library books. Inspired by this, he began to imagine that origami could be applied to building spacecraft components, particularly solar panels that could one day send solar power from space to be used on earth.
Design News Webinar Series
3/31/2015 11:00 a.m. California / 2:00 p.m. New York
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
5/7/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 20 - 24, Taking the Internet of Things to the Cloud
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7

Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service