HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
<<  <  Page 3/3
Ann R. Thryft
User Rank
Blogger
Re: Plastic waste and regulations
Ann R. Thryft   11/15/2011 2:21:01 PM
NO RATINGS
I think one of the main points about this standard is that it will give an objective measurement for exactly how long it takes certain materials to biodegrade to certain levels using certain additives. In other words, it's not so much a "standard" that must be measured up to as it is a spec to indicate that certain conditions are being met and certain results are being achieved.

jlinstrom
User Rank
Gold
Plastic waste and regulations
jlinstrom   11/15/2011 12:14:10 PM
NO RATINGS
I'm puzzled by engineering complaints about government having too many regulations - Look at the most profound organism we know - the human body. The mind, the physical system, the interplay of organs, tissues, fluids. Study human physiology and you will realize that there are no small/short/truncated control loops. Every bodily fact enters into setting up a new stasis. Was it Einstein who said "make things as simple as possible, and not one bit simpler"? that's what we should notice and complain about in this world - governments that imperfectly regulate for political and financial reasons and still end up missing  the target.

Eat food that hasn't been subjected to sanitary regulations, fly, get operated on, have a new house built, buy a new car, take prescription drugs. Now tell me with a straight face that ALL are better off if government would back off and let good old blatant free-market capitalism rule the transaction. Much more efficiently.

I tire of hearing these slogans from engineers; we know better.

Alexander Wolfe
User Rank
Blogger
Standards Proliferation
Alexander Wolfe   11/15/2011 7:29:32 AM
NO RATINGS
We're seeing an interesting regulatory and standards dynamic in the tech sector. On the political front, there's lots of talk about how regulations are an impediment to business and have to be dismantled. It seemed (or seems) to me that this movement is very powerful. Yet when I look at what's happening on the ground, engineering companies are having to become MORE compliant with stds and regs, not less. An illustrative case is that of equipment safety regulations. Because there are regs in place in Europe, with which US vendors selling globally have to comply, those regs apply de facto domestically.

Rob Spiegel
User Rank
Blogger
Re: Biodegradable plastics standard?
Rob Spiegel   11/14/2011 9:16:14 PM
NO RATINGS
William K, a good number of engineers would agree with your thoughts when it comes to the disposal of tin lead solder. They still complain there was no science behind the choice to ban the small amount of lead that keeps tin solder from growing whiskers.

William K.
User Rank
Platinum
Biodegradable plastics standard?
William K.   11/14/2011 6:34:39 PM
NO RATINGS
Yuu are certainly correct in that there would need to be a fundamental change in the entire philosophy of handling waste. There is no question about that. BUT just because doing it one way is what everybody has been doing does not make it the right way or the smart way. There are lots of examples of poor choices being continued because nobody was willing to admit that the initial choice was poor. Ego is a terrible handicap.

The huge amount of waste entombed presently should serve to show that it was not the best choice. But those in charge can't see any other way.

Dave Palmer
User Rank
Platinum
Re: Biodegradable plastics standard?
Dave Palmer   11/14/2011 5:51:56 PM
NO RATINGS
@William: Actually, there is a class of biodegradable plastics, called oxobiodegradable, which are intended to break down under weathering conditions.  They contain metal salts which are intended to speed up "normal" weathering.  There are a few problems here: first, do they break down into something which is environmentally benign, or do you just wind up spreading hazardous organic chemicals far and wide? For example, if you broke polycarbonate back down into its monomer, you'd be converting a material which is relatively inert (bulk polycarbonate) into something which is thought to be an endocrine disruptor and possible carcinogen in humans and animals (Bisphenol A).  Second, now that you've sped up "normal" weathering, will the material be able to perform as intended in the application? Third, as you've mentioned, there's a question of how to handle the waste to make sure it's exposed to UV rather than buried under a pile of trash.  This seems like a simple problem, until you realize that you're talking about changing the way millions of tons of trash is processed.  Finally, as with all biodegradable plastics, there's the problem of recycling (or, more accurately, making sure they don't get recycled).

Beth is definitely right that this is an extremely tough problem.

William K.
User Rank
Platinum
Biodegradable plastics standard?
William K.   11/14/2011 4:53:36 PM
NO RATINGS
Here is an interesting consideration about the plastics scrap stream: Many of these plastics would break down if they were exposed to the sunlight and the related ultraviolet light. I have seen that happen. But embedding them in a dark and dry landfill assures that they will last a very long time. So perhaps thefundamental concept of currenbt landfills is deffective. OF course it would take a bit more effrt to get the pllastics to where they would be subject to weathering, but that might be better than encapsulating them for "all eternity" as a nasty legacy for those who follow us. 

Really, it might be better to encourage landfill decomposition of the waste instead of assuring it's longevity. Part of that could include a bit more effort towards the separation of plastic materials, also the separation of metals. The fact is that the density of the base materials in landfill is much greater than their density in ores when mmetals are mined. The conversion of the plastic waste stream into a useable  base should also wind up consuming less energy. With plastics, this could include solar energy which is sort of "free". 

Dave Palmer
User Rank
Platinum
Recyclability
Dave Palmer   11/14/2011 12:50:57 PM
NO RATINGS
This is an interesting departure from previous generations of biodegradable plastics.  The polyolefin-starch blends which came out in the early 1990s, which were the first plastics to be marketed as biodegradable, had many shortcomings.  First of all, only the starch component was actually biodegradable, leaving the polyolefin component in the environment.  So, from an environmental perspective, they were no better than non-biodegradable plastics (and probably worse, since the smaller fragments of polyolefin were more mobile in the environment).  Second, the starch component would sometimes degrade in use, rendering the product unusable - and would stubbornly fail to degrade in landfills. Third, if they were introduced into recycling streams, the biodegradable plastics would degrade the properties of the recycled product.  All of these disadvantages tended to give the term "biodegradable plastics" a bad name.

Since then, there have been several other attempts at making biodegradable plastics.  Among them, compostable plastics based on polylactic acid have been fairly successful from a marketing perspective.  One of the big selling points is that they are made from natural materials (corn oil); of course, whether or not converting food crops into disposible plastics in the midst of a global food crisis is a good idea is debatable, to say the least.  These plastics are intended to be composted, not landfilled.  Recyclers won't accept them, and keeping them out of recycling streams continues to be an issue.

The biodegradable plastics described in this article are interesting in that they are normal commodity plastics with additives to allow them to be degraded by anaerobic bacteria in landfills.  This should address some of the issues with previous generations of biodegradable plastics.  One issue which I didn't see addressed, however, was the question of recyclability.  What happens if these additives make their way into recycled products? If these plastics need to be kept out of recycling streams, how do you train environmentally-conscious consumers - who have learned that recycling plastics is the responsible thing to do - not to recycle them?

Another issue - brought up in the press release - is emissions.  Perversely, one virtue of non-biodegradable plastics is that, since they don't break down, the carbon contained in them is effectively sequestered.  Biodegradation of plastics releases carbon dioxide and methane, which are greenhouse gases.  The press release mentions that the methane could potentially be captured and used as fuel, but either way, you are putting carbon in the atmosphere which otherwise wouldn't be there.  It would be interesting to see a full life cycle analysis of this.

Another interesting twist is the fact that it's illegal in California to label any plastic product as "biodegradable." It would be interesting to see whether plastics with these additives might be able to get past this ban.

I think everyone agrees that reducing the volume of plastics in landfills would be a good thing.  However, it remains to be seen whether biodegradable plastics are a good way to achieve this, or if the formula of reduce, reuse, and recycle is a better path.

Beth Stackpole
User Rank
Blogger
Big job ahead of them
Beth Stackpole   11/14/2011 9:39:11 AM
NO RATINGS
Any kind of technology, material, or standard that could put a dent in the 29 million tons of nonrecyled plastics in landfills would be a really important deal. I'm just hoping that such a standard wouldn't get stymied or watered down by the usual standards-setting process or any of the politics that's likely to ensue. This kind of thing is too important to be tripped up by such machinations.

<<  <  Page 3/3


Partner Zone
Latest Analysis
Factory floor engineers may soon be able to operate machinery and monitor equipment status simply by tapping their eyeglasses.
GE Aviation not only plans to use 3D printing to mass-produce metal parts for its LEAP jet engine, but it's also developing a separate technology for 3D-printing metal parts used in its other engines.
In this TED presentation, Wayne Cotter, a computer engineer turned standup comic, explains why engineers are natural comedians.
IBM's new SyNAPSE chip makes it possible for computers to both memorize and compute simultaneously.
The “Space Kid,” 11, will be one of the first civilians to have his design manufactured in space by NASA, thanks to the City X Project, which inspires kids to think about new 3D-printed inventions that could be useful for humans living in space.
More:Blogs|News
Design News Webinar Series
9/10/2014 11:00 a.m. California / 2:00 p.m. New York
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Sep 22 - 26, MCU Software Development – A Step-by-Step Guide (Using a Real Eval Board)
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service