HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Comments
View Comments: Newest First|Oldest First|Threaded View
<<  <  Page 2/2
Beth Stackpole
User Rank
Blogger
Re: Wing Complexity
Beth Stackpole   8/29/2011 9:55:25 AM
NO RATINGS
Ivan: Given that you worked at Boeing and obviously know far more about the use of this kind of technology and the complexities involved in aircraft wing development, I'm going to defer to you on this one.

So perhaps it is a bit far-fetched at this point, but projects like this are becoming more commonplace. My point was that efforts like the SULSA and the Urbee (and the many others we've reported on and will report on) all play a key role in advancing additive manufacturing technology so it can be used at commercially at some point on this kind of scale. As for the advantages, the research team cited the ability to more cost-effectively produce hard-to-manufacture shapes and structures and reduced reliance on expensive tooling. I guess the bottom line is we'll have to wait and see.

Ivan Kirkpatrick
User Rank
Platinum
Wing Complexity
Ivan Kirkpatrick   8/29/2011 9:34:42 AM
NO RATINGS
I am not so sure I can agree with your comment about it being "not so far fetched".  From what I know of modern commercial aircraft wings, they are very complex mechanical constructions that are highly stressed.  I have watched video of a "test to failure" when I worked at Boeing on a new wing for one of the big airliners.  The wing is displaced with an array of cables while stress gauges take measurements.  The failure is rather dramatic even in a controlled environment.

I am impressed with the progress being made in additive manufacturing and it will definitely have a place in producing production parts and assemblies.  However a modern commercial aircraft wing requires structural loads that would seem to be inconsistent with the nylon materials mentioned in the article.

What would be the advantages to be obtained in using this manufacturing technique in a production setting?  I can see speed and perhaps cost, maybe consistency in shape and strength?  Corrosion resistance and maintainability might be a factor as well.

It just seems like the best application for this technology is going to be in lightly loaded applications.  If that is true then carefully selecting the applications for the manufacturing process would be required as I am sure they are doing right now.

It is a very interesting project nonetheless and one to watch.

<<  <  Page 2/2


Partner Zone
Latest Analysis
Samsung's Galaxy line of smartphones used to fare quite well in the repairability department, but last year's flagship S5 model took a tumble, scoring a meh-inducing 5/10. Will the newly redesigned S6 lead us back into star-studded territory, or will we sink further into the depths of a repairability black hole?
Fifteen European research centers have launched EuroCPS to help European companies develop innovative products for the Internet of Things.
Get your Allman Brothers albums ready. The iconic Volkswagen Microbus may be poised for a comeback, and this time it could be electric.
In 2003, the world contained just over 500 million Internet-connected devices. By 2010, this figure had risen to 12.5 billion connected objects, almost six devices per individual with access to the Internet. Now, as we move into 2015, the number of connected 'things' is expected to reach 25 billion, ultimately edging toward 50 billion by the end of the decade.
NASA engineer Brian Trease studied abroad in Japan as a high school student and used to fold fast-food wrappers into cranes using origami techniques he learned in library books. Inspired by this, he began to imagine that origami could be applied to building spacecraft components, particularly solar panels that could one day send solar power from space to be used on earth.
More:Blogs|News
Design News Webinar Series
3/31/2015 11:00 a.m. California / 2:00 p.m. New York
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
5/7/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 20 - 24, Taking the Internet of Things to the Cloud
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service