HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
Comments
View Comments: Newest First|Oldest First|Threaded View
<<  <  Page 2/2
Beth Stackpole
User Rank
Blogger
Re: Wing Complexity
Beth Stackpole   8/29/2011 9:55:25 AM
NO RATINGS
Ivan: Given that you worked at Boeing and obviously know far more about the use of this kind of technology and the complexities involved in aircraft wing development, I'm going to defer to you on this one.

So perhaps it is a bit far-fetched at this point, but projects like this are becoming more commonplace. My point was that efforts like the SULSA and the Urbee (and the many others we've reported on and will report on) all play a key role in advancing additive manufacturing technology so it can be used at commercially at some point on this kind of scale. As for the advantages, the research team cited the ability to more cost-effectively produce hard-to-manufacture shapes and structures and reduced reliance on expensive tooling. I guess the bottom line is we'll have to wait and see.

Ivan Kirkpatrick
User Rank
Platinum
Wing Complexity
Ivan Kirkpatrick   8/29/2011 9:34:42 AM
NO RATINGS
I am not so sure I can agree with your comment about it being "not so far fetched".  From what I know of modern commercial aircraft wings, they are very complex mechanical constructions that are highly stressed.  I have watched video of a "test to failure" when I worked at Boeing on a new wing for one of the big airliners.  The wing is displaced with an array of cables while stress gauges take measurements.  The failure is rather dramatic even in a controlled environment.

I am impressed with the progress being made in additive manufacturing and it will definitely have a place in producing production parts and assemblies.  However a modern commercial aircraft wing requires structural loads that would seem to be inconsistent with the nylon materials mentioned in the article.

What would be the advantages to be obtained in using this manufacturing technique in a production setting?  I can see speed and perhaps cost, maybe consistency in shape and strength?  Corrosion resistance and maintainability might be a factor as well.

It just seems like the best application for this technology is going to be in lightly loaded applications.  If that is true then carefully selecting the applications for the manufacturing process would be required as I am sure they are doing right now.

It is a very interesting project nonetheless and one to watch.

<<  <  Page 2/2


Partner Zone
Latest Analysis
It's been two years since the Mac Mini's last appearance on iFixit's teardown table, but a newly revised version joins Apple's lineup this week.
More often than not, with the purchase of a sports car comes the sacrifice of any sort of utility. In other words, you can forget about a large trunk, extra seats for the kids, and more importantly driving in snowy (or inclement) weather. But what if there was a vehicle that offered the best of both worlds; great handling and practicality?
Kevin Gautier of Formlabs describes the making of a carbon fiber mold for an intake manifold, using a $3,300 3D printer, during Medical Design & Manufacturing Midwest.
Science fiction author Isaac Asimov may have the best rules for effective brainstorming and creativity. His never-before-published essay, "On Creativity," recently made it to the Web pages of MIT Technology Review.
Much has been made over the potentially dangerous flammability of lithium-ion batteries after major companies like Boeing, Sony, and Tesla have grappled with well-publicized battery fires. Researchers at Stanford University may have come up with a solution to this problem with a smart sensor for lithium-ion batteries that provides a warning if the battery is about to overheat or catch fire.
More:Blogs|News
Design News Webinar Series
10/7/2014 8:00 a.m. California / 11:00 a.m. New York
9/25/2014 11:00 a.m. California / 2:00 p.m. New York
9/10/2014 11:00 a.m. California / 2:00 p.m. New York
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Oct 20 - 24, How to Design & Build an Embedded Web Server: An Embedded TCP/IP Tutorial
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: 10/28-10/30 11:00 AM
Sponsored by Stratasys
Next Class: 10/28-10/30 2:00 PM
Sponsored by Gates Corporation
Next Class: 11/11-11/13 2:00 PM
Sponsored by Littelfuse
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service