HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
<<  <  Page 2/2
ed_bltn
User Rank
Iron
Re: Turbulent VS Laminar flow for heat exchange
ed_bltn   8/26/2011 11:45:31 AM
NO RATINGS
William K.'s response is correct. Going a little farther, once the heat is in the plenum air laminar vs turbulent doesn't matter so much. What matters most is the volume of heated air leaving the system. High volume usually means high speed and turbulent.

Rob Spiegel
User Rank
Blogger
Feedback on this blog
Rob Spiegel   8/26/2011 8:51:12 AM
NO RATINGS
Hey, everyone,

I'd like your impression on this blog. Typically, the Sherlock Ohms blog follows the story of an engineering trying to solve a vexing-but-pressing problem. Usually it's after something goes wrong.

In this case, our Sherlock is sussing out an answer during the design process. This certainly still involves logic, investigation and knowledge.

Does this approach have value? If you collectively think so, we could start adding more examples of engineering-in-action in addition to figuring out how to solve a problem.

William K.
User Rank
Platinum
Turbulent VS Laminar flow for heat exchange
William K.   8/25/2011 10:13:06 PM
NO RATINGS
The evaluation in the blog is correct in asserting that turbulent flow is much better for heat removal, and the reason goes a bit further as to why laminar flow does not pick up heat as well. In a truely laminar flow situation the fluid molecules next to the surface may not be moving at all, and the next layer are moving very slowly, with a classical velocity gradient up to the fastest moving molecules, which are usually those farthest from the wall. The result is that heat is primarily transfered to the air br conduction through the stagnant layers. This is the mechanism of laminar flow's poorer performance. 

Not the most exciting explanation in the world, but some useful background stuff.

<<  <  Page 2/2


Partner Zone
Latest Analysis
Factory floor engineers may soon be able to operate machinery and monitor equipment status simply by tapping their eyeglasses.
GE Aviation not only plans to use 3D printing to mass-produce metal parts for its LEAP jet engine, but it's also developing a separate technology for 3D-printing metal parts used in its other engines.
In this TED presentation, Wayne Cotter, a computer engineer turned standup comic, explains why engineers are natural comedians.
IBM's new SyNAPSE chip makes it possible for computers to both memorize and compute simultaneously.
The “Space Kid,” 11, will be one of the first civilians to have his design manufactured in space by NASA, thanks to the City X Project, which inspires kids to think about new 3D-printed inventions that could be useful for humans living in space.
More:Blogs|News
Design News Webinar Series
9/10/2014 11:00 a.m. California / 2:00 p.m. New York
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Sep 22 - 26, MCU Software Development – A Step-by-Step Guide (Using a Real Eval Board)
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service