HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
<<  <  Page 2/2
ed_bltn
User Rank
Iron
Re: Turbulent VS Laminar flow for heat exchange
ed_bltn   8/26/2011 11:45:31 AM
NO RATINGS
William K.'s response is correct. Going a little farther, once the heat is in the plenum air laminar vs turbulent doesn't matter so much. What matters most is the volume of heated air leaving the system. High volume usually means high speed and turbulent.

Rob Spiegel
User Rank
Blogger
Feedback on this blog
Rob Spiegel   8/26/2011 8:51:12 AM
NO RATINGS
Hey, everyone,

I'd like your impression on this blog. Typically, the Sherlock Ohms blog follows the story of an engineering trying to solve a vexing-but-pressing problem. Usually it's after something goes wrong.

In this case, our Sherlock is sussing out an answer during the design process. This certainly still involves logic, investigation and knowledge.

Does this approach have value? If you collectively think so, we could start adding more examples of engineering-in-action in addition to figuring out how to solve a problem.

William K.
User Rank
Platinum
Turbulent VS Laminar flow for heat exchange
William K.   8/25/2011 10:13:06 PM
NO RATINGS
The evaluation in the blog is correct in asserting that turbulent flow is much better for heat removal, and the reason goes a bit further as to why laminar flow does not pick up heat as well. In a truely laminar flow situation the fluid molecules next to the surface may not be moving at all, and the next layer are moving very slowly, with a classical velocity gradient up to the fastest moving molecules, which are usually those farthest from the wall. The result is that heat is primarily transfered to the air br conduction through the stagnant layers. This is the mechanism of laminar flow's poorer performance. 

Not the most exciting explanation in the world, but some useful background stuff.

<<  <  Page 2/2


Partner Zone
Latest Analysis
National Instruments sees 5G WiFi and software-enhanced test equipment as advances that will change technology and business.
The new $120,000 Model S P85D boasts a 221-horsepower front motor and a 470-horsepower rear motor that packs a punch. The car is able to go from 0-60 MPH in just 3.1 seconds … quietly.
The new composites manufacturing innovation center is intended to be a source of grand challenges for industry, like the kind that got us to the moon under JFK. These aren't the words its new CEO Craig Blue used, but that's the idea and the vision behind the Institute for Advanced Composites Manufacturing Innovation (IACMI).
The ideal gas law, first stated in 1834, has suddenly become big news.
Bill Gates took to Reddit for an AMA (Ask Me Anything) and fielded fielded questions on everything from his outlook on the future of technology to who he's rooting for in the Super Bowl.
More:Blogs|News
Design News Webinar Series
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
12/10/2014 8:00 a.m. California / 11:00 a.m. New York
11/19/2014 11:00 a.m. California / 2:00 p.m. New York
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Jan 26 - 30, IPv6 for Micros – Hands-On
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  67


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Stratasys
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service