HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  RESOURCE CENTER  |  INDUSTRIES
Page 1/2  >  >>
User Rank
Platinum
Towing an iceberg
8/28/2011 6:21:57 PM
NO RATINGS
Interesting article.  It's neat to how how 3D technology can be used to similate real world situations and the results of different possible solutions.  Now it'll be interesting to see how technology works to define and simulate the next step.  Quite often in a project like this there is a first theoretical test.   And then there is a smaller model type test.  How will technology develop in a way to give a good small test of a consept like this.  Will it be tugging a small iceberg?  Will it be done in simulation inside of a lab tugging small pieces of ice through a swimming pool.

I really enjoy seeing how a concept can go from its first conception inside of someones head, into a simulation, into a model and then into realization.

User Rank
Blogger
Re: Iceberg transport
8/27/2011 6:29:50 PM
NO RATINGS
All good questions, Ivan. The method of transportation that they studied was moving a tabular iceberg from a specific point A to point B (Newfoundland to the Canary Islands) using a single tug (one boat because of environmental concerns, I believe). The simulation determined it would take 140 days and that it could be done without significant melting given Mougin's innovative skirt and belt design. I'm not sure they did anything beyond this in terms of how slice and dice the iceberg once arriving at the destination or how to break it up and turn it into the water source. I do know the simulation accounted for whether or not the iceberg would fracture during transport, hence why they zeroed in on a tabular iceberg structure.

User Rank
Platinum
Iceberg transport
8/27/2011 1:50:20 PM
NO RATINGS
I have heard that icebergs are very dangerous since they are unstable and tend to roll unexpectedly.  This might be a hazard during transport.  Perhaps this is not a problem for very large sheets of ice that might be part of this scheme.

The simulation involves a large ocean going tug towing an iceberg to the destination.  Perhaps multiple ships might be able to get the whole thing up to a couple of knots.  They might be able to tow it using cables but anchoring them in the ice in a reliable fashion might be a problem.

It is indeed interesting when a sufficiently accurate simulation provides unusual insights into a problem, especially when it leads to such positive conclusions.

As previously noted it would seem the destination processing might be a critical factor.  It would take some thinking to figure out an economical way to process the berg once it arrived at its destination.  Cutting it into manageable pieces might help.

It might be more cost effective to figure out how to capture more of the rainfall and trap it before it runs into the sea.  I have heard that there is more than enough fresh water that falls as rain on North America but it runs off to the sea.  I also understand that a lot of Bermuda's water needs are met by cisterns that trap rain water falling on the roofs of many homes.

Do we have any more information on the method of transport that was part of the study?  And how long did the study anticipate for the actual transportation, several months?  Any ideas on how to create or carve out a large enough piece of the ice?

User Rank
Silver
Re: Good for Dassault, but Best Alternative?
8/27/2011 1:17:58 PM
NO RATINGS
It is clear that water can be moved as icebergs, though the costs reported are misleading since there is no detail about how the iceberg will be tapped when it is at its destination.  This might not be insurmountable, but it might make the iceberg a less viable choice except for special destinations where there are no other options.

It has already been proven that water can be effectively moved in aquaducts and these are more readily coupled into irrigation water systems as well as municipal systems.  We would do better to look at distributing water on a continental basis in North America.  This would be a practical infrastructure project and would involve no advanced knowledge or simulations.

The California aquaduct built in the early 1960s demonstrated the enormous productivity that can result from relatively primitive water engineering.

On an ongoing basis, the Great Lakes and many Canadian sources could be used in a continental water management system.  This could change the productivity of massive Western land areas.  The special benefit would be that it could enable establishing standing forests of sufficient extent to serve as 'carbon' capture and sequestration without sacrificing the economic backbone of our industrial economy.   Other measures would still be important, but it would no longer be necessary rail against coal fired power plants or oil sands processing.

User Rank
Blogger
Re: Interesting....
8/26/2011 12:05:04 PM
NO RATINGS
@ScotCan: Given that a big part of the simulation had to do with simulating the "melt" of the iceberg and knowing that the team used extensive thermal simulation, I'm sure those factors were taken into consideration. Here's a link to more about the specific thermal simulation around iceberg melt.

User Rank
Platinum
Re: Interesting....
8/26/2011 11:47:52 AM
NO RATINGS
How about the Coriolis effect on such a large iceberg? Apparently it gets very complicated as one gets closer to the Equator. Did the sumulation account for that aspect?

User Rank
Blogger
Re: back in the 70's
8/26/2011 9:48:18 AM
NO RATINGS
Mougin has been at this for 40 years and at one time, had the backing of a Saudi prince. Perhaps it's the same project and it's evolved over time. Not sure about the ties to Iowa State University, though.

User Rank
Iron
back in the 70's
8/26/2011 9:39:10 AM
NO RATINGS
I remember a project like this back in the 70's with Saudia Arabia financing...thru Iowa State University, if my memory serves correctly.  The icebergs were to be shaped to provide less towing resistance.  The idea was to cover the iceberg's surface above water with a layer of sawdust for insulation and a giant tarp anchored to the ice.

User Rank
Bronze
Why tow an iceberg so far?
8/26/2011 9:26:58 AM
NO RATINGS
While it may be practical to tow an ice berg. Why not scoop up smaller ice bergs and transport them in "water tankers". If they melt it would not matter then pump the water out at the destination. No need to cover them or build a receiving port for a half mile block of ice.

User Rank
Blogger
Re: Interesting....
8/25/2011 2:05:08 PM
NO RATINGS
Chuck: These particular sets of simulations were really to prove out the feasiblity of the concept, not necessarily verify a specific design. If Mougin's company gets funding and if they move on to the next stage, my guess is they'll employ lots of other simulations to further refine the designs, prove them out, and still build a physical prototype at some point. With something of this magnitude, I can't imagine going straight to production on anything without actually creating a physical system.

Most of the engineering groups I'm talking with are leveraging simulation tools not as a substitute for building a physical prototype, but rather as a way to reduce the number of physical prototypes they build. So they only spend the money to build a physical prototype of the optimized design.

Page 1/2  >  >>

 Partner Zone
Latest Analysis
The team at iFixit want to keep you and your home safe. So they tore into Nest Labs' Nest Protect smoke alarm to see what it's made of.
An industrial robot known for its safety around humans has been programmed to work a checkout lane and choose how it accomplishes certain tasks.
Trends in motion control all converge toward greater efficiency in movement, energy, control, and wiring.
In the oil and gas industry, it’s paramount that one pays attention to the accuracy of his level and temperature instrumentation, particularly within processing plants.
Contributing editor Cabe Atwell developed a Raspberry Pi and Arduino-based remote network fish tank control for his goldfish, Goldie Fishwater.
More:Blogs|News
Design News Webinar Series
11/20/2013 Available On Demand
8/28/2013 Available On Demand
8/13/2013 Available On Demand
12/18/2013 8:00 a.m. California / 11:00 a.m. New York / 4:00 p.m. London
From Dell / Intel®
Scott Hamilton, vertical market strategist for Dell Precision workstations, 5/2/2013    7
Early in my career, I worked as a draftsman and remember the days of drawing on vellum with numbered pencils and Mylar with plastic lead. This was a fun experience in the sense that I ...
Most recent post: Ralphy Boy
From Dell / Intel®
Trey Morton, Dell, 4/25/2013    3
I've been using workstations for more than 10 years and love finding ways to get more performance from my system. With demanding professional applications that require more power each ...
Most recent post: Cabe Atwell
From Dell / Intel®
Kirsten Billhardt, Manufacturing Industry Marketing Strategist, Dell, 3/26/2013    6
A lasting memory from my first job as an engineer in an auto assembly plant is standing on hard concrete at six in the morning, vending-machine coffee clutched in hand, listening to ...
Most recent post: Ockham
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Dec 16 - 20, Introduction to SCADA Security
SEMESTERS: 1  |  2  |  3  |  4