HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
prasadb1
User Rank
Iron
Re: Model-based design to the rescue?
prasadb1   7/2/2011 7:28:00 PM
NO RATINGS

I agree new and evolving model-based design tools have been found quite promising in Mechanical CAD world for reducing hardware prototypes. However, their use in Electronics/ Electrical CAD applications has been less widespread. In my company we use embedded systems for REU and PCBs.  We have many ways to capture similarities of design via parameters and relations for PCBs (e.g. Mentor graphics expedition tools). However, rapid advances of electronic components and uniqueness of electronic software logics that we employ in each embedded product along with the miniaturizations of evolving hardware technology has made applications of model-based design more challenging in ECAD world.  

I believe as we mature more into a consistent and repetitive set of embedded architecture in ECAD world, model based design is likely to pick up its usage.

MBA-Motorsport
User Rank
Iron
Re: Model-based design to the rescue?
MBA-Motorsport   6/28/2011 12:12:04 PM
NO RATINGS
For me the biggest question when looking at embedded systems is " do we really need it" There are many many applications for embedded systems but the technology for me is still looking for the killer use, its seems very much a case of technology push as opposed to market pull for the technology still. The medical examples you gave are great and i can really see the benefit, what would be a good move would be for systems developers to tell us all what they can do with the systems, then when we're designing a product we can consider if we can add any benefit.

As an example, car tyres have an embedded system already in them, that being a little rubber block in the tread that tells the observer if the tread depth is down to its legal limit. now if we could incorporate a tread depth signal with a pressure signal and send it to the dashboard it would have safety and environmental benefits. But i have no knowledge of whether you can embedd a device into the tyre that will not cause out of balance and be durable enough to be relied upon etc etc. But if i knew what could be done with these systems i could make a judgement on whether its worth it or not.

Geoff

Charles Murray
User Rank
Blogger
No shortage of innovative applications
Charles Murray   6/28/2011 11:10:04 AM
NO RATINGS
I agree that application of embedded technology can often be maddeningly and needlessly complex. That said, there are still plenty of innovative new embedded applications. Medical is a perfect example. Several companies are now working on putting electrocardiogram technology in Band-Aid. Ford Motor Co. last month said they've teamed with Medtronic to create a dashboard-based automotive glucsose monitoring system for diabetic drivers. Recently, I talked to a cardiologist who told me that he often gets calls from his patients' implanted defibrillators, telling him when the patients' heartbeats are out of whack. (He even has to call his patients to tell them, "Your defibrillator called me and said your heart is racing.") The number of innovative automotive applications is almost off the charts, there are so many.

Beth Stackpole
User Rank
Blogger
Model-based design to the rescue?
Beth Stackpole   6/28/2011 9:58:09 AM
NO RATINGS
Given the mounting complexities and time constraints confronting embedded system designers, it's no wonder innovation in this space can be a daunting task. New and evolving model-based design tools promise engineers a better way to test, verify, and explore system designs before committing to actual prototypes. I wonder, though, how readily these tools are being embraced by this class of developer and what kind of benefits they're able to achieve. Would love to hear some success and war stories. Any one?



Partner Zone
Latest Analysis
Take a look at the top 20 US undergraduate engineering programs. Then tell us -- did your school make the cut?
Producing high-quality end-production metal parts with additive manufacturing for applications like aerospace and medical requires very tightly controlled processes and materials. New standards and guidelines for machines and processes, materials, and printed parts are underway from bodies such as ASTM International.
Engineers at the University of San Diego’s Jacobs School of Engineering have designed biobatteries on commercial tattoo paper, with an anode and cathode screen-printed on and modified to harvest energy from lactate in a person’s sweat.
A Silicon Valley company has made the biggest splash yet in the high-performance end of the electric car market, announcing an EV that zips from 0 to 60 mph in 3.4 seconds and costs $529,000.
The biggest robot swarm to date is made of 1,000 Kilobots, which can follow simple rules to autonomously assemble into predetermined shapes. Hardware and software are open-source.
More:Blogs|News
Design News Webinar Series
7/23/2014 11:00 a.m. California / 2:00 p.m. New York
7/17/2014 11:00 a.m. California / 2:00 p.m. New York
6/25/2014 11:00 a.m. California / 2:00 p.m. New York
5/13/2014 10:00 a.m. California / 1:00 p.m. New York / 6:00 p.m. London
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Sep 8 - 12, Get Ready for the New Internet: IPv6
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Next Class: September 30 - October 2
Sponsored by Altera
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2014 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service