HOME  |  NEWS  |  BLOGS  |  MESSAGES  |  FEATURES  |  VIDEOS  |  WEBINARS  |  INDUSTRIES  |  FOCUS ON FUNDAMENTALS
  |  REGISTER  |  LOGIN  |  HELP
News
Materials & Assembly
Plastic Makes a Better Light Bulb
1/8/2013

Wake Forest University scientists have devised a shatterproof, white light, flicker-free lighting device based on field-induced polymer electroluminescent (FIPEL) technology.   (Source: Wake Forest University)
Wake Forest University scientists have devised a shatterproof, white light, flicker-free lighting device based on field-induced polymer electroluminescent (FIPEL) technology.
(Source: Wake Forest University)

Return to Article

View Comments: Newest First|Oldest First|Threaded View
<<  <  Page 4/4
Ann R. Thryft
User Rank
Blogger
Re: Electroluminescence
Ann R. Thryft   1/8/2013 11:24:37 AM
Maybe we're all used to Silicon Valley-style announcements of new technology for sale right now in high volumes, and not of the long R&D cycle behind that technology. In materials technology, especially energy-related, development can take a long time. Thanks, William, for finding those cost figures. The main researcher has had a single working device for a long time--but not a bulb, and, presumably, a very expensive device, and, I'd guess, one he's been tinkering with as a prototype.

Nancy Golden
User Rank
Platinum
Re: Seems like a no-brainer
Nancy Golden   1/8/2013 10:14:21 AM
NO RATINGS
I agree - the first question that popped into my head was why such a long time to market? I absolutely love the idea of unbreakable bulbs and hope this technology takes off. I think you have a great idea, Elizabeth - recycled plastics would go a long way in making them even more eco-friendly. Flicker-free is another plus - sounds like a winner if its cost-effective.

naperlou
User Rank
Blogger
Re: Electroluminescence
naperlou   1/8/2013 10:10:17 AM
NO RATINGS
William, this is often the case with university developed research.  Universities are often very poor at getting inventions out into the real world. 

Elizabeth M
User Rank
Blogger
Seems like a no-brainer
Elizabeth M   1/8/2013 9:01:17 AM
NO RATINGS
Interesting technology that solves the problem of the fragility of lightbulbs, but like the other commenter I am surprised this hasn't been brought to light (no pun intended) sooner if the technology has been around so long. I'm not a massive fan of plastic, though, but it does sound like a more eco-friendly design with the elimination of mercury and the reduced production costs. Perhaps recycled plastic could even be used in mass production down the line?

williamlweaver
User Rank
Platinum
Electroluminescence
williamlweaver   1/8/2013 8:03:04 AM
NO RATINGS
Thanks, Ann for this awesome news and the free PDF. I'm amused / frustrated / encouraged that Professor Carroll has had an operating device for the past 10 years and we haven't seen faster commercialization of the FIPEL technology. A quick search shows the primary ingredient [Ir(pp)3] is fairly expensive in research quantities at $0.91 / milligram while the other components, PVK at $0.03 / mg and MWNT ($0.02 / mg) are relatively inexpensive. The device in this research shows a 500% increase in luminance. We can all hope that additional research will discover additional leaps in efficiency. Commercial availability later this year is fantastic.

<<  <  Page 4/4
Partner Zone
Latest Analysis
Samsung's Galaxy line of smartphones used to fare quite well in the repairability department, but last year's flagship S5 model took a tumble, scoring a meh-inducing 5/10. Will the newly redesigned S6 lead us back into star-studded territory, or will we sink further into the depths of a repairability black hole?
Fifteen European research centers have launched EuroCPS to help European companies develop innovative products for the Internet of Things.
Get your Allman Brothers albums ready. The iconic Volkswagen Microbus may be poised for a comeback, and this time it could be electric.
In 2003, the world contained just over 500 million Internet-connected devices. By 2010, this figure had risen to 12.5 billion connected objects, almost six devices per individual with access to the Internet. Now, as we move into 2015, the number of connected 'things' is expected to reach 25 billion, ultimately edging toward 50 billion by the end of the decade.
NASA engineer Brian Trease studied abroad in Japan as a high school student and used to fold fast-food wrappers into cranes using origami techniques he learned in library books. Inspired by this, he began to imagine that origami could be applied to building spacecraft components, particularly solar panels that could one day send solar power from space to be used on earth.
More:Blogs|News
Design News Webinar Series
3/31/2015 11:00 a.m. California / 2:00 p.m. New York
2/25/2015 11:00 a.m. California / 2:00 p.m. New York
12/11/2014 8:00 a.m. California / 11:00 a.m. New York
5/7/2015 11:00 a.m. California / 2:00 p.m. New York
Quick Poll
The Continuing Education Center offers engineers an entirely new way to get the education they need to formulate next-generation solutions.
Apr 20 - 24, Taking the Internet of Things to the Cloud
SEMESTERS: 1  |  2  |  3  |  4  |  5  |  6 |  7


Focus on Fundamentals consists of 45-minute on-line classes that cover a host of technologies. You learn without leaving the comfort of your desk. All classes are taught by subject-matter experts and all are archived. So if you can't attend live, attend at your convenience.
Last Archived Class
Sponsored by Proto Labs
Learn More   |   Login   |   Archived Classes
Twitter Feed
Design News Twitter Feed
Like Us on Facebook

Sponsored Content

Technology Marketplace

Copyright © 2015 UBM Canon, A UBM company, All rights reserved. Privacy Policy | Terms of Service